Human detection from Unmanned Aerial Vehicles (UAV) is gaining popularity in the field of disaster management, crowd counting, people monitoring. Real time human detection from UAV is a challenging task, because of many constraints involved. This study proposes a system for real time detection of humans on videos captured from UAVs addressing three of these constraints namely, flying height, computation time and scale of viewing. The proposed method integrated an android application with a binary classifier based on Haar-features to automatically detect human / non-human class from UAV images. The video frames were parsed and detected humans from image frames were geo-localized and visualized on Google Earth. The performance was evaluated for geo-localization accuracy, computation time and detection accuracy, considering human coverage – pixel size relationship for various heights and scale factor. Based on flying height - human size relationship and tradeoff between detection accuracy vs computation time, the study came up with optimal parameters for OpenCV’s cv2.cascadeClassifier. detectMultiScale function. This paper establishes a strong ground for further research relating to real time human detection from UAV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.