This review aims to present current knowledge of the fungi involved in lignocellulose degradation with an overview of the various classes of lignocellulose‐acting enzymes engaged in the pretreatment and saccharification step. Fungi have numerous applications and biotechnological potential for various industries including chemicals, fuel, pulp, and paper. The capability of fungi to degrade lignocellulose containing raw materials is due to their highly effective enzymatic system. Along with the hydrolytic enzymes consisting of cellulases and hemicellulases, responsible for polysaccharide degradation, they have a unique nonenzymatic oxidative system which together with ligninolytic enzymes is responsible for lignin modification and degradation. An overview of the enzymes classification is given by the Carbohydrate‐Active enZymes (CAZy) database as the major database for the identification of the lignocellulolytic enzymes by their amino acid sequence similarity. Finally, the recently discovered novel class of recalcitrant polysaccharide degraders‐lytic polysaccharide monooxygenases (LPMOs) are presented, because of these enzymes importance in the cellulose degradation process.
SUMMARYProduction of biofuels from renewable feedstocks has captured considerable scientific attention since they could be used to supply energy and alternative fuels. Bioethanol is one of the most interesting biofuels due to its positive impact on the environment. Currently, it is mostly produced from sugar- and starch-containing raw materials. However, various available types of lignocellulosic biomass such as agricultural and forestry residues, and herbaceous energy crops could serve as feedstocks for the production of bioethanol, energy, heat and value-added chemicals. Lignocellulose is a complex mixture of carbohydrates that needs an efficient pretreatment to make accessible pathways to enzymes for the production of fermentable sugars, which after hydrolysis are fermented into ethanol. Despite technical and economic difficulties, renewable lignocellulosic raw materials represent low-cost feedstocks that do not compete with the food and feed chain, thereby stimulating the sustainability. Different bioprocess operational modes were developed for bioethanol production from renewable raw materials. Furthermore, alternative bioethanol separation and purification processes have also been intensively developed. This paper deals with recent trends in the bioethanol production as a fuel from different renewable raw materials as well as with its separation and purification processes.
SummaryBiodiesel and biogas are two very important sources of renewable energy worldwide, and particularly in EU countries. While biodiesel is almost exclusively used as transportation fuel, biogas is mostly used for production of electricity and heat. The application of more sophisticated purification techniques in production of pure biomethane from biogas allows its delivery to natural gas grid and its subsequent use as transportation fuel. While biogas is produced mostly from waste materials (landfills, manure, sludge from wastewater treatment, agricultural waste), biodiesel in EU is mostly produced from rapeseed or other oil crops that are used as food. This raises the 'food or fuel' concerns. To mitigate this problem considerable efforts have been done to use non-food feedstock for biodiesel production. These include all kinds of waste oils and fats, but recently more attention has been devoted to production of microbial oils by cultivation of microorganisms that are able to accumulate high amounts of lipids in their biomass. Promising candidates for microbial lipids production can be found www.ftb.com.hrPlease note that this is an unedited version of the manuscript that has been accepted for publication. This version will undergo copyediting and typesetting before its final form for publication. We are providing this version as a service to our readers. The published version will differ from this one as a result of linguistic and technical corrections and layout editing.2 among different strains of filamentous fungi, yeast, bacteria and microalgae. Feedstocks of interest are agricultural waste rich in carbohydrates as well as different lignocellulosic raw materials where some technical issues have to be resolved. In this work, recovery and purification of biodiesel and biogas were also considered.
Sustainable recycling of lignocellulosic biomass includes utilization of all carbohydrates present in its hydrolysates. Since wheat straw is a xylose-rich raw material, utilization of xylose from obtained liquid part (liquor) of hydrolysates improves overall bioprocess efficiency. In this work, dilute acid pre-treatment of wheat straw was performed in high-pressure reactor at different temperatures (160 °C-200 °C), residence times (1 min-10 min), and acids (H 2 SO 4 and H 3 PO 4) concentrations. During dilute acid pre-treatment, hemicellulose is degraded to pentose sugars that cannot be used by industrial ethanol-producing yeasts. Therefore, genetically engineered Saccharomyces cerevisiae strain that can utilize xylose was used. Fermentations were performed on different xylose-rich liquor wheat straw hydrolysates in shake-flasks and in horizontal rotating tubular bioreactor. The efficiency of fermentations carried out in shake flasks using xylose-rich liquor wheat straw hydrolysates were in the range of 19.61-74.51 %. However, the maximum bioprocess efficiency (88.24 %) was observed during fermentation in the HRTB on the liquor wheat straw hydrolysate obtained by pre-treatment with 2 % w/w phosphoric acid.
Alternative to the use of fossil fuels are biofuels (e.g., bioethanol, biodiesel and biogas), which are more environmentally friendly and which can be produced from different renewable resources. In this investigation, bioethanol production from raw sugar beet cossettes (semi-solid substrate) by yeast Saccharomyces cerevisiae in a horizontal rotating tubular bioreactor (HRTB) was studied. Obtained results show that HRTB rotation mode (constant or interval) and rotation speed have considerable impact on the efficiency of bioethanol production in the HRTB. The main goal of this research was to develop a non-structural mathematical model of bioethanol production from raw sugar beet cossettes in the HRTB. The established mathematical model of bioethanol production in the HRTB describes substrate utilization and product formation (glycerol, ethanol and acetate) and presumes negative impact of high substrate concentration on the working microorganism (substrate inhibition) by using Andrews inhibition kinetics. All simulations of bioethanol production in the HRTB were performed by using Berkeley Madonna software, version 8.3.14 (Berkeley Madonna, Berkeley, CA, USA). The established non-structural bioprocess model describes relatively well the bioethanol production from raw sugar beet cossettes in the HRTB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.