We describe a method for eye pupil localization based on an ensemble of randomized regression trees and use several publicly available datasets for its quantitative and qualitative evaluation. The method compares well with reported state-of-the-art and runs in real-time on hardware with limited processing power, such as mobile devices.
Abstract-Current best local descriptors are learned on a large dataset of matching and non-matching keypoint pairs. However, data of this kind is not always available since detailed keypoint correspondences can be hard to establish. On the other hand, we can often obtain labels for pairs of keypoint bags. For example, keypoint bags extracted from two images of the same object under different views form a matching pair, and keypoint bags extracted from images of different objects form a nonmatching pair. On average, matching pairs should contain more corresponding keypoints than non-matching pairs. We describe an end-to-end differentiable architecture that enables the learning of local keypoint descriptors from such weakly-labeled data.
Localization of salient facial landmark points, such as eye corners or the tip of the nose, is still considered a challenging computer vision problem despite recent efforts. This is especially evident in unconstrained environments, i.e., in the presence of background clutter and large head pose variations. Most methods that achieve state-of-the-art accuracy are slow, and, thus, have limited applications. We describe a method that can accurately estimate the positions of relevant facial landmarks in real-time even on hardware with limited processing power, such as mobile devices. This is achieved with a sequence of estimators based on ensembles of regression trees. The trees use simple pixel intensity comparisons in their internal nodes and this makes them able to process image regions very fast. We test the developed system on several publicly available datasets and analyse its processing speed on various devices. Experimental results show that our method has practical value.
An image mosaic is an assembly of a large number of small images, usually called tiles, taken from a specific dictionary/codebook. When viewed as a whole, the appearance of a single large image emerges, i.e. each tile approximates a small block of pixels. ASCII art is a related (and older) graphic design technique for producing images from printable characters. Although automatic procedures for both of these visualization schemes have been studied in the past, some are computationally heavy and cannot offer real-time and interactive performance. We propose an algorithm able to reproduce the quality of existing non-photorealistic rendering techniques, in particular ASCII art and image mosaics, obtaining large performance speed-ups. The basic idea is to partition the input image into a rectangular grid and use a decision tree to assign a tile from a pre-determined codebook to each cell. Our implementation can process video streams from webcams in real time and it is suitable for modestly equipped devices. We evaluate our technique by generating the renderings of a variety of images and videos, with good results. The source code of our engine is publicly available.
Current best local descriptors are learned on a large dataset of matching and non-matching keypoint pairs. However, data of this kind is not always available since detailed keypoint correspondences can be hard to establish. On the other hand, we can often obtain labels for pairs of keypoint bags. For example, keypoint bags extracted from two images of the same object under different views form a matching pair, and keypoint bags extracted from images of different objects form a nonmatching pair. On average, matching pairs should contain more corresponding keypoints than non-matching pairs. We describe an end-to-end differentiable architecture that enables the learning of local keypoint descriptors from such weakly-labeled data. Additionally, we discuss how to improve the method by incorporating the procedure of mining hard negatives. We also show how can our approach be used to learn convolutional features from unlabeled video signals and 3D models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.