The Boltzmann transport equation is used to calculate thermal and electrical conductivity of metal nanostructures with characteristic dimensions in the 25-500 nm range, near to and above the Debye temperature. Thermal conductivity contributions from phonons and electrons are considered. The intrinsic effects of electron-phonon, phonon-phonon, and phonon-electron scattering, and grain boundary and surface interactions are addressed. Excellent agreement is found between model results and available data reporting direct measurements of thermal conductivity of nanowires, ribbons, and thin films in Al, Pt, and Cu, respectively. The Wiedemann-Franz ͑W-F͒ law and Lorenz factor are examined with decreasing size; their applicability is found to degrade in nanowires due mainly to increased relative phonon contribution. The effect of differences in the electron mean-free path for thermal gradient versus electrical field is also examined. A modified version of W-F is presented, corrected for these two factors and valid from macroscale to nanoscale provided characteristic sizes exceed the phonon mean-free path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.