This paper summarizes theoretical investigations of changes in optical properties of smallest symmetrical nanofilm-molecular crystals due to the presence of boundaries and different boundary parameters. Using analytic and numerical calculations, the energy spectrum of excitons was found and relative permittivity of these ultrathin dielectric films was determined. The influence of boundary parameters on the occurrence of discrete (by parameters) and selective (by planes) absorption of external electromagnetic radiation was also investigated. Because of the symmetric conditions on film boundaries, double resonant peaks appear.
A free photon Hamiltonian is linearized using Pauli's matrices. Based on the correspondence of Pauli's matrices kinematics and the kinematics of spin operators, it has been proved that a free photon integral of motion is a sum of orbital momentum and spin momentum for a half-one spin. Linearized Hamiltonian represents a bilinear form of products of spin and momentum operators. Unitary transformation of this form results in an equivalent Hamiltonian, which has been analyzed by the method of Green's functions. The evaluated Green function has given possibility for interpretation of photon reflection as a transformation of photon to antiphoton with energy change equal to double energy of photon and for spin change equal to Dirac's constant. Since photon is relativistic quantum object the exact determining of its characteristics is impossible. It is the reason for series of experimental works in which photon orbital momentum, which is not integral of motion, was investigated. The exposed theory was compared to the mentioned experiments and in some elements the satisfactory agreement was found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.