This work is focused on the state of charge (SOC) estimation of a lithium-ion battery based on a nonlinear observer. First, the second-order resistor-capacitor (RC) model of the battery pack is introduced by utilizing the physical behavior of the battery. Then, for the nonlinear function of the RC model, a one-sided Lipschitz condition is proposed to ensure that the nonlinear function can play a positive role in the observer design. After that, a nonlinear observer design criterion is presented based on the H ∞ method, which is formulated as linear matrix inequalities (LMIs). Compared with existing nonlinear observer-based SOC estimation methods, the proposed observer design criterion does not depend on any estimates of the unknown variables. Consequently, the convergence of the proposed nonlinear observer is guaranteed for any operating conditions. Finally, both the static and dynamic experimental cases are given to show the efficiency of the proposed nonlinear observer by comparing with the classic extended Kalman filter (EKF).
An accurate state of charge (SOC) estimation is the basis of the Battery Management System (BMS). In this paper, a new estimation method which considers fractional calculus is proposed to estimate the lithium battery state of charge. Firstly, a modified second-order RC model based on fractional calculus theory is developed to model the lithium battery characteristics. After that, a pulse characterization test is implemented to obtain the battery terminal voltage and current, in which the parameter identification is completed based on least square method. Furthermore, the proposed method based on Fractional Unscented Kalman Filter (FUKF) algorithm is applied to estimate the battery state of charge value in both static and dynamic battery discharging experiment. The experimental results have demonstrated that the proposed method shows high accuracy and efficiency for state of charge estimation and the fractional calculus contributes to the battery state of charge estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.