An efficient "one-pot" strategy for the structure-controlled synthesis of hyperbranched polymers (HBPs) based on a "latent" inimer (LI-Br), containing a furan-protected maleimide monomer and a haloalkane initiator, is presented. At high temperatures, the "latent" inimer is converted to a "real" inimer after releasing maleimide (MI) via a retro-Diels-Alder (r-DA) reaction and then copolymerized with methyl methacrylate by self-condensing vinyl copolymerization. Due to the dynamic characteristic of the r-DA reaction, the release of naked MI and the subsequent copolymerization can be regulated by the temperature or stereochemistry of Diels-Alder (DA) adducts. Thus, the "onepot" structure-controlled synthesis of HBPs with various degrees of branching was achieved. By further implementation of a programmable temperature change, some valuable hyperbranched topologies such as star-shaped and long-chain hyperbranched polymers can be constructed avoiding sophisticated synthetic routes.
An efficient "one-pot" strategy for the structure-controlled synthesis of hyperbranched polymers (HBPs) based on a "latent" inimer (LI-Br), containing a furan-protected maleimide monomer and a haloalkane initiator, is presented. At high temperatures, the "latent" inimer is converted to a "real" inimer after releasing maleimide (MI) via a retro-Diels-Alder (r-DA) reaction and then copolymerized with methyl methacrylate by self-condensing vinyl copolymerization. Due to the dynamic characteristic of the r-DA reaction, the release of naked MI and the subsequent copolymerization can be regulated by the temperature or stereochemistry of Diels-Alder (DA) adducts. Thus, the "onepot" structure-controlled synthesis of HBPs with various degrees of branching was achieved. By further implementation of a programmable temperature change, some valuable hyperbranched topologies such as star-shaped and long-chain hyperbranched polymers can be constructed avoiding sophisticated synthetic routes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.