Squeeze-and-Excitation (SE) Networks won the last ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) classification competition and is very popular in today's vision community. The SE block is the core of Squeeze-and-Excitation Network (SENet), which adaptively recalibrates channel-wise features and suppresses less useful ones. Since SE blocks can be directly used in existing models and effectively improve performance, SE blocks are widely used in a variety of tasks. In this paper, we propose a novel Parametric Sigmoid (PSigmoid) to enhance the SE block. We named the new module PSigmoid SE (PSE) block. The PSE block can not only suppress features in a channel-wise manner, but also enhance features. We evaluate the performance of our method on four common datasets including CIFAR-10, CIFAR-100, SVHN and Tiny ImageNet. Experimental results show the effectiveness of our method. In addition, we compare the differences between the PSE block and the SE block through a detailed analysis of the configuration. Finally, we use a combination of PSE block and SE block to obtain better performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.