Introduction: Numerous recent publications have explored Brain Computer Interfaces (BCI) systems as rehabilitation tools to help subacute and chronic stroke patients recover upper extremity movement. Recent work has shown that BCI therapy can lead to better outcomes than conventional therapy. BCI combined with other techniques such as Functional Electrical Stimulation (FES) and Virtual Reality (VR) allows to the user restore the neurological function by inducing the neural plasticity through improved real-time detection of motor imagery (MI) as patients perform therapy tasks. Methods: Fifty-one stroke patients with upper extremity hemiparesis were recruited for this study. All participants performed 25 sessions with the MI BCI and assessment visits to track the functional changes before and after the therapy. Results: The results of this study demonstrated a significant increase in the motor function of the paretic arm assessed by Fugl-Meyer Assessment (FMA-UE), FMA-UE = 4.68 points, P < 0.001, reduction of the spasticity in the wrist and fingers assessed by Modified Ashworth Scale (MAS), MAS-wrist =-0.72 points (SD = 0.83), P < 0.001, MAS-fingers =-0.63 points (SD = 0.82), P < 0.001. Other significant improvements in the grasp ability were detected in the healthy hand. All these functional improvements achieved during the BCI therapy persisted 6 months after the therapy ended. Results also showed that patients with Motor Imagery accuracy (MI) above 80% increase 3.16 points more in the FMA than patients below this threshold (95% CI; [1.47-6.62], P = 0.003). The functional improvement was not related with the stroke severity or with the stroke stage. Conclusion: The BCI treatment used here was effective in promoting long lasting functional improvements in the upper extremity in stroke survivors with severe, moderate and mild impairment. This functional improvement can be explained by improved neuroplasticity in the central nervous system.
Introduction: Recent studies explored promising new quantitative methods to analyze electroencephalography (EEG) signals. This paper analyzes the correlation of two EEG parameters, Brain Symmetry Index (BSI) and Laterality Coefficient (LC), with established functional scales for the stroke assessment. Methods: Thirty-two healthy subjects and thirty-six stroke patients with upper extremity hemiparesis were recruited for this study. The stroke patients where subdivided in three groups according to the stroke location: Cortical, Subcortical, and Cortical + Subcortical. The participants performed assessment visits to record the EEG in the resting state and perform functional tests using rehabilitation scales. Then, stroke patients performed 25 sessions using a motor-imagery based Brain Computer Interface system (BCI). BSI was calculated with the EEG data in resting state and LC was calculated with the Event-Related Synchronization maps. Results: The results of this study demonstrated significant differences in the BSI between the healthy group and Subcortical group (P = 0.001), and also between the healthy and Cortical+Subcortical group (P = 0.019). No significant differences were found between the healthy group and the Cortical group (P = 0.505). Furthermore, the BSI analysis in the healthy group based on gender showed statistical differences (P = 0.027). In the stroke group, the correlation between the BSI and the functional state of the upper extremity assessed by Fugl-Meyer Assessment (FMA) was also significant, ρ = −0.430 and P = 0.046. The correlation between the BSI and the FMA-Lower extremity was not significant (ρ = −0.063, P = 0.852). Similarly, the LC calculated in the alpha band has significative correlation with FMA of upper extremity (ρ = −0.623 and P < 0.001) and FMA of lower extremity (ρ = −0.509 and P = 0.026). Other important significant correlations between LC and functional scales were observed. In addition, the patients showed an improvement in the FMA-upper extremity after the BCI therapy (FMA = 1 median [IQR: 0-8], P = 0.002). Conclusion: The quantitative EEG tools used here may help support our understanding of stroke and how the brain changes during rehabilitation therapy. These tools can help identify changes in EEG biomarkers and parameters during therapy that might lead to improved therapy methods and functional prognoses.
Persons diagnosed with disorders of consciousness (DOC) typically suffer from motor and cognitive disabilities. Recent research has shown that non-invasive brain-computer interface (BCI) technology could help assess these patients' cognitive functions and command following abilities. 20 DOC patients participated in the study and performed 10 vibro-tactile P300 BCI sessions over 10 days with 8-12 runs each day. Vibrotactile tactors were placed on the each patient's left and right wrists and one foot. Patients were instructed, via earbuds, to concentrate and silently count vibrotactile pulses on either their left or right wrist that presented a target stimulus and to ignore the others. Changes of the BCI classification accuracy were investigated over the 10 days. In addition, the Coma Recovery Scale-Revised (CRS-R) score was measured before and after the 10 vibro-tactile P300 sessions. In the first run, 10 patients had a classification accuracy above chance level (>12.5%). In the best run, every patient reached an accuracy ≥60%. The grand average accuracy in the first session for all patients was 40%. In the best session, the grand average accuracy was 88% and the median accuracy across all sessions was 21%. The CRS-R scores compared before and after 10 VT3 sessions for all 20 patients, are showing significant improvement (p = 0.024). Twelve of the twenty patients showed an improvement of 1 to 7 points in the CRS-R score after the VT3 BCI sessions (mean: 2.6). Six patients did not show a change of the CRS-R and two patients showed a decline in the score by 1 point. Every patient achieved at least 60% accuracy at least once, which indicates successful command following.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.