Optical trapping and patterning cells or microscopic particles is fascinating. We developed a light sheet-based optical tweezer to trap dielectric particles and live HeLa cells. The technique requires the generation of a tightly focussed diffraction-limited light-sheet realized by a combination of cylindrical lens and high NA objective lens. The resultant field is a focussed line (along x-axis) perpendicular to the beam propagation direction (z-axis). This is unlike traditional optical tweezers that are fundamentally point-traps and can trap one particle at a time. Several spherical beads undergoing Brownian motion in the solution are trapped by the lightsheet gradient potential, and the time (to reach trap-centre) is estimated from the video captured at 230 frames/s. High-speed imaging of beads with increasing laser power shows a steady increase in trap stiffness with a maximum of 0.00118 pN/nm at 52.5 mW. This is order less than the traditional point-traps, and hence may be suitable for applications requiring delicate optical forces. On the brighter side, light sheet tweezer (LOT) can simultaneously trap multiple objects with the distinct ability to manipulate them in the transverse (xy) plane via translation and rotation. However, the trapped beads displayed free movement along the light-sheet axis (x-axis), exhibiting a single degree of freedom. Furthermore, the tweezer is used to trap and pattern live HeLa cells in various shapes and structures. Subsequently, the cells were cultured for a prolonged period of time (> 18 h), and cell viability was ascertained. We anticipate that LOT can be used to study constrained dynamics of microscopic particles and help understand the patterned cell growth that has implications in optical imaging, microscopy, and cell biology.
Over the last decade, single molecule localization microscopy (SMLM) has developed into a set of powerful techniques that has improved spatial resolution over diffraction-limited microscopy and has demonstrated the ability to resolve biological features at molecular scale. We introduce a single molecule based scanning SMLM (scanSMLM) system that enables rapid volume imaging. Using a standard widefield illumination, the system employs a scanning based detection 4f-sub-system suited for volume interrogation. The 4f system comprises of a combination of electrically-tunable lens and high NA detection objective lens. By rapidly changing the aperture (or equivalently the focus) of electrically-tunable lens (ETL) in a 4f detection system, the selectivity of axial (Z) plane can be achieved in the object plane, for which the corresponding image forms in the image/detector plane. So, in-principle one can scan the object volume by just changing the aperture of ETL. To carry out volume imaging, a cyclic scanning scheme is developed and compared with conventional scanning routinely used in SMLM. The scanning scheme serves the purpose of distributing photobleaching evenly by ensuring uniform dwell time on each frame for collecting data (single molecule events) throughout the specimen volume. With a minimal change in the system hardware (requiring addition of ETL lens and related hardware for step-voltage generation and time synchronization) in the existing SMLM system, volume scanning can be achieved. To demonstrate, we imaged fluorescent beads embedded in a gel-matrix 3D block as a test sample. Subsequently, scanSMLM is employed to understand the clustering of HA single molecules in a transfected cell (Influenza A disease model). The system for the first time enables visualization of HA distribution in 3D cells that reveal its clustering across the cell volume. Critical biophysical parameters related to HA clusters (density, #HA/cluster and cluster fraction) are also determined for a single NIH3T3 cell transfected with photoactivable Dendra2-HA plasmid DNA.
A light sheet based optical tweezer (LOT) is developed to trap microscopic dielectric particles and live HeLa cells. The technique requires the generation of a tightly-focussed diffraction-limited light sheet which is realized by a combination of cylindrical lens and high NA objective lens. The field pattern generated at the geometrical focus is a tightly focussed line (along x-axis) perpendicular to the beam propagation direction (z-axis). Spherical beads undergoing Brownian motion in the solution were trapped by the gradient potential and the travel time is estimated from the fast CMOS camera (operating at 230 frames / sec). High-speed imaging of beads shows the stiffness of LOT system to be ≈ 0.00118 ~pN/nm, which is an order less than that of traditional optical point-traps. The trapped beads displayed free movement along the light-sheet axis (x-axis), exhibiting one degree of freedom. Subsequently, LOT technique is used to optically trap and pattern dielectric beads and HeLa cells in a line. We could successfully pattern 8 dielectric beads and 3 HeLa cells in a straight line. We anticipate that LOT can be used to study the 1D-physics of microscopic particles and help understand the patterned growth of live cells.
The blinking properties of a single molecule are critical for single-molecule localization microscopy (SMLM). Typically, SMLM techniques involve recording several frames of diffraction-limited bright spots of single-molecules with a detector exposure time close to the blinking period. This sets a limit on the temporal resolution of SMLM to a few tens of milliseconds. Realizing that a substantial fraction of single molecules emit photons for time scales much shorter than the average blinking period, we propose accelerating data collection to capture these fast emitters. Here, we put forward a short exposure-based SMLM (shortSMLM) method powered by sCMOS detector for understanding dynamical events (both at single molecule and ensemble level). The technique is demonstrated on an Influenza-A disease model, where NIH3T3 cells (both fixed and live cells) were transfected by Dendra2-HA plasmid DNA. Analysis shows a 2.76-fold improvement in the temporal resolution that comes with a sacrifice in spatial resolution, and a particle resolution shift PAR-shift (in terms of localization precision) of $$\sim$$ ∼ 11.82 nm compared to standard SMLM. We visualized dynamic HA cluster formation in transfected cells post 24 h of DNA transfection. It is noted that a reduction in spatial resolution does not substantially alter cluster characteristics (cluster density, $$\#$$ # molecules/cluster, cluster spread, etc.) and, indeed, preserves critical features. Moreover, the time-lapse imaging reveals the dynamic formation and migration of Hemagglutinin (HA) clusters in a live cell. This suggests that $$short-SMLM$$ s h o r t - S M L M using a synchronized high QE sCMOS detector (operated at short exposure times) is excellent for studying temporal dynamics in cellular system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.