Au25(SR)18 (R = -CH2-CH2-Ph) is a molecule-like nanocluster displaying distinct electrochemical and optical features. Although it is often taken as an example of a particularly well-understood cluster, very recent literature has provided a quite unclear or even a controversial description of its properties. We prepared monodisperse Au25(SR)18(0) and studied by cyclic voltammetry, under particularly controlled conditions, the kinetics of its reduction or oxidation to a series of charge states, -2, -1, +1, +2, and +3. For each electrode process, we determined the standard heterogeneous electron-transfer (ET) rate constants and the reorganization energies. The latter points to a relatively large inner reorganization. Reduction to form Au25(SR)18(2-) and oxidation to form Au25(SR)18(2+) and Au25(SR)18(3+) are chemically irreversible. The corresponding decay rate constants and lifetimes are incompatible with interpretations of very recent literature reports. The problem of how ET affects the Au25 magnetism was addressed by comparing the continuous-wave electron paramagnetic resonance (cw-EPR) behaviors of radical Au25(SR)18(0) and its oxidation product, Au25(SR)18(+). As opposed to recent experimental and computational results, our study provides compelling evidence that the latter is a diamagnetic species. The DFT-computed optical absorption spectra and density of states of the -1, 0, and +1 charge states nicely reproduced the experimentally estimated dependence of the HOMO-LUMO energy gap on the actual charge carried by the cluster. The conclusions about the magnetism of the 0 and +1 charge states were also reproduced, stressing that the three HOMOs are not virtually degenerate as routinely assumed: In particular, the splitting of the HOMO manifold in the cation species is severe, suggesting that the usefulness of the superatom interpretation is limited. The electrochemical, EPR, and computational results thus provide a self-consistent picture of the properties of Au25(SR)18 as a function of its charge state and may furnish a methodology blueprint for understanding the redox and magnetic behaviors of similar molecule-like gold nanoclusters.
X-ray crystallography has been fundamental in discovering fine structural features of ultrasmall gold clusters capped by thiolated ligands. For still unknown structures, however, new tools capable of providing relevant structural information are sought. We prepared a 25-gold atom nanocluster protected by the smallest ligand ever used, ethanethiol. This cluster displays the electrochemistry, mass spectrometry, and UV-vis absorption spectroscopy features of similar Au25 clusters protected by 18 thiolated ligands. The anionic and the neutral form of Au25(SEt)18 were fully characterized by (1)H and (13)C NMR spectroscopy, which confirmed the monolayer's properties and the paramagnetism of neutral Au25(SEt)18(0). X-ray crystallography analysis of the latter provided the first known structure of a gold cluster protected by a simple, linear alkanethiolate. Here, we also report the direct observation by electron nuclear double resonance (ENDOR) of hyperfine interactions between a surface-delocalized unpaired electron and the gold atoms of a nanocluster. The advantages of knowing the exact molecular structure and having used such a small ligand allowed us to compare the experimental values of hyperfine couplings with DFT calculations unaffected by structure's approximations or omissions.
Monodisperse Au(25)L(18)(0) (L = S(CH(2))(2)Ph) and [n-Oct(4)N(+)][Au(25)L(18)(-)] clusters were synthesized in tetrahydrofuran. An original strategy was then devised to oxidize them: in the presence of bis(pentafluorobenzoyl) peroxide, the neutral or the negatively charged clusters react as efficient electron donors in a dissociative electron-transfer (ET) process, in the former case yielding [Au(25)L(18)(+)][C(6)F(5)CO(2)(-)]. As opposed to other reported redox methods, this dissociative ET approach is irreversible, easily controllable, and clean, particularly for NMR purposes, as no hydrogen atoms are introduced. By using this approach, the -1, 0, and +1 charge states of Au(25)L(18) could be fully characterized by (1)H and (13)C NMR spectroscopy, using one- and two-dimensional techniques, in various solvents, and as a function of temperature. For all charge states, the NMR results and analysis nicely match recent structural findings about the presence of two different ligand populations in the capping monolayer, each resonance of the two ligand families displaying distinct NMR patterns. The radical nature of Au(25)L(18)(0) is particularly evident in the (1)H and (13)C NMR patterns of the inner ligands. The NMR behavior of radical Au(25)L(18)(0) was also simulated by DFT calculations, and the interplay between theory and experiments revealed a fundamental paramagnetic contribution coming from Fermi contact shifts. Interestingly, the NMR patterns of Au(25)L(18)(-) and Au(25)L(18)(+) were found to be quite similar, pointing to the latter cluster form as a diamagnetic species.
We present a multilevel molecular modeling study aimed at elucidating physical and chemical properties of gold clusters capped by a monolayer of thiolated oligopeptides. The protecting peptides are based on the R-aminoisobutyric acid unit, form intramolecular CdO • • • H-N bonds, and can form intermolecular hydrogen bonds. This study is motivated by recent breakthroughs into the determination of crystal structures of small gold clusters protected with small thiolated molecules. Such structures are characterized by surface gold atoms in the so-called "staple motifs", as opposed to the commonly assumed structures in which thiolates bind to a high-symmetry gold cluster. It is unclear, however, whether the staple motif is common to all kinds of protecting layers, especially those made of polypeptides that are largely stabilized by intermolecular hydrogen bonding. Structural and spectroscopic properties are presented to understand the nature of peptide-peptide interactions, their structural arrangements, and their effect on the gold-thiol structural motif. † Part of the special issue "Protected Metallic Clusters, Quantum Wells and Metallic Nanocrystal Molecules".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.