The efficiency of solid oxide fuel cell cathodes can be improved by microstructural optimization and using active layers, such as doped bismuth oxides. In this work, Bi1.5Y0.5O3 (BYO) films are prepared by spray-pyrolysis deposition at reduced temperatures on a Zr0.84Y0.16O1.92 (YSZ) electrolyte. The influence of the BYO film on the performance of an La0.8Sr0.2MnO3 (LSM) cathode prepared by traditional screen-printing and spray-pyrolysis is investigated. A complete structural, morphological, and electrochemical characterization is carried out by X-ray diffraction, electron microscopy, and impedance spectroscopy. The incorporation of BYO films decreases the Area Specific Resistance (ASR) of screen-printed cathodes from 6.4 to 2.2 Ω cm2 at 650 °C. However, further improvements are observed for the nanostructured electrodes prepared by spray-pyrolysis with ASRs of 0.55 and 1.15 Ω cm2 at 650 °C for cathodes with and without an active layer, respectively. These results demonstrate that microstructural control using optimized fabrication methods is desirable to obtain high-efficiency electrodes for solid oxide fuel cell (SOFC) applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.