BACKGROUND:The identification of novel biomarkers for early breast cancer detection would be a great advance. Because of their role in tumorigenesis and stability in body fluids, microRNAs (miRNAs) are emerging as a promising diagnostic tool. Our aim was to identify miRNAs deregulated in breast tumors and evaluate the potential of circulating miRNAs in breast cancer detection.
Background and aims Alpha-1 antitrypsin (AAT) is a product of SERPINA1 gene mainly expressed by hepatocytes. Clinically relevant mutations in the SERPINA1 gene, such as Z (Glu342Lys), results in an expression of misfolded AAT protein having high propensity to polymerize, accumulate in hepatocytes and thus to enhance a risk for hepatocyte damage and subsequent liver disease. So far, the relationship between the Z-AAT accumulation and liver cell damage remains not completely understood. We present three-dimensional organoid culture systems, as a novel tool for modeling Z-AAT-related liver diseases. Methods We have established liver organoids from liver biopsies of patients with homozygous (ZZ) and heterozygous (MZ) deficiency and normal (MM) genotypes of AAT. The features of these organoid models were characterized by analyzing AAT protein secretion and intracellular aggregation in MZ and ZZ genotypes as well as SERPINA1 expression in differentiated cultures. Results Transcriptional analysis of differentiated organoid cultures by RNA-Seq showed hepatocyte-specific gene expression profile. Genes, such as ALB, APOB, CYP3A4 and SERPINA1, were validated and confirmed through quantitative-PCR analysis. The organoids from MZ and ZZ cases showed intracellular aggregation and lower secretion of AAT protein, and lower expression of ALB and APOB, as typically seen in hepatocytes from Z-AAT deficiency patients. Furthermore, organoids responded to external stimulus. Treatment with oncostatin M, a well-known inducer of SERPINA1, increased expression of the full-length transcripts (AAT-1C) as well as the short transcript of AAT (AAT-ST1C4). Conclusions Liver organoid model recapitulates the key features of Z-AAT deficiency and provides a useful tool for disease modeling.
Retinitis Pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. RP is the leading cause of visual loss in individuals younger than 60 years, with a prevalence of about 1 in 4000. The molecular genetic diagnosis of autosomal recessive RP (arRP) is challenging due to the large genetic and clinical heterogeneity. Traditional methods for sequencing arRP genes are often laborious and not easily available and a screening technique that enables the rapid detection of the genetic cause would be very helpful in the clinical practice. The goal of this study was to develop and apply microarray-based resequencing technology capable of detecting both known and novel mutations on a single high-throughput platform. Hence, the coding regions and exon/intron boundaries of 16 arRP genes were resequenced using microarrays in 102 Spanish patients with clinical diagnosis of arRP. All the detected variations were confirmed by direct sequencing and potential pathogenicity was assessed by functional predictions and frequency in controls. For validation purposes 4 positive controls for variants consisting of previously identified changes were hybridized on the array. As a result of the screening, we detected 44 variants, of which 15 are very likely pathogenic detected in 14 arRP families (14%). Finally, the design of this array can easily be transformed in an equivalent diagnostic system based on targeted enrichment followed by next generation sequencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.