Hippo effectors YAP and TAZ control cell fate and survival through various mechanisms, including transcriptional regulation of key genes. However, much of this research has been marked by conflicting results, as well as controversy over whether YAP and TAZ are redundant. A substantial portion of the discordance stems from their contradictory roles in stem cell self-renewal vs. differentiation and cancer cell survival vs. apoptosis. In this review, we present an overview of the multiple context-dependent functions of YAP and TAZ in regulating cell fate decisions in stem cells and organoids, as well as their mechanisms of controlling programmed cell death pathways in cancer.
Summary
Although cell density is known to affect numerous biological processes including gene expression and cell fate specification, mechanistic understanding of what factors link cell density to global gene regulation is lacking. Here, we reveal that the expression of thousands of genes in mouse embryonic stem cells (mESCs) is affected by cell seeding density and that low cell density enhances the efficiency of differentiation. Mechanistically, β-catenin is localized primarily to adherens junctions during both self-renewal and differentiation at high density. However, when mESCs differentiate at low density, β-catenin translocates to the nucleus and associates with Tcf7l1, inducing co-occupied lineage markers. Meanwhile, Esrrb sustains the expression of pluripotency-associated genes while repressing lineage markers at high density, and its association with DNA decreases at low density. Our results provide new insights into the previously neglected but pervasive phenomenon of density-dependent gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.