Purpose Automation of sub-tasks during robotic surgery is challenging due to the high variability of the surgical scenes intra- and inter-patients. For example, the pick and place task can be executed different times during the same operation and for distinct purposes. Hence, designing automation solutions that can generalise a skill over different contexts becomes hard. All the experiments are conducted using the Pneumatic Attachable Flexible (PAF) rail, a novel surgical tool designed for robotic-assisted intraoperative organ manipulation. Methods We build upon previous open-source surgical Reinforcement Learning (RL) training environment to develop a new RL framework for manipulation skills, rlman. In rlman, contextual RL agents are trained to solve different aspects of the pick and place task using the PAF rail system. rlman is implemented to support both low- and high-dimensional state information to solve surgical sub-tasks in a simulation environment. Results We use rlman to train state of the art RL agents to solve four different surgical sub-tasks involving manipulation skills using the PAF rail. We compare the results with state-of-the-art benchmarks found in the literature. We evaluate the ability of the agent to be able to generalise over different aspects of the targeted surgical environment. Conclusion We have shown that the rlman framework can support the training of different RL algorithms for solving surgical sub-task, analysing the importance of context information for generalisation capabilities. We are aiming to deploy the trained policy on the real da Vinci using the dVRK and show that the generalisation of the trained policy can be transferred to the real world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.