BackgroundNumerous studies have shown sex differences in the onset and severity of hypertension. Despite these sex-differences the majority of animal studies are carried out in males. This study investigated expression changes in both male and female hypertensive mouse kidneys to identify common mechanisms that may be involved in the development of hypertension.MethodsThe Schlager hypertensive mouse model (BPH/2J) and its normotensive control (BPN/3J) were used in this study. Radiotelemetry was performed on 12 to 13 week old BPH/2J and BPN/3J male and female animals. Affymetrix GeneChip Mouse Gene 1.0 ST Arrays were performed in kidney tissue from 12 week old BPH/2J and BPN/3J male and female mice (n = 6/group). Genes that were differentially expressed in both male and female datasets were validated using qPCR.ResultsSystolic arterial pressure and heart rate was significantly higher in BPH/2J mice compared with BPN/3J mice in both males and females. Microarray analysis identified 153 differentially expressed genes that were common between males and females (70 upregulated and 83 downregulated). We validated 15 genes by qPCR. Genes involved in sympathetic activity (Hdc, Cndp2), vascular ageing (Edn3), and telomere maintenance (Mcm6) were identified as being differentially expressed between BPH/2J and BPN/3J comparisons. Many of these genes also exhibited expression differences between males and females within a strain.ConclusionsThis study utilised data from both male and female animals to identify a number of genes that may be involved in the development of hypertension. We show that female data can be used to refine candidate genes and pathways, as well as highlight potential mechanisms to explain the differences in prevalence and severity of disease between men and women.Electronic supplementary materialThe online version of this article (doi:10.1186/s12881-014-0101-x) contains supplementary material, which is available to authorized users.
Methylglyoxal (MGO), a dicarbonyl compound derived from glucose, is elevated in diabetes mellitus and contributes to vascular complications by crosslinking collagen and increasing arterial stiffness. It is known that MGO contributes to inflammation as it forms advanced glycation end products (AGEs), which activate macrophages via the receptor RAGE. The aim of study was to investigate whether inflammatory activation can increase MGO levels, thereby completing a vicious cycle. In order to validate this, macrophage (RAW264.7, J774A.1) and microglial (N11) cells were stimulated with IFN-γ and LPS (5 + 5 and 10 + 10 IFN-γ U/ml or μg/ml LPS), and extracellular MGO concentration was determined after derivatization with 5,6-Diamino-2,4-dihydroxypyrimidine sulfate by HPLC. MGO levels in activated macrophage cells (RAW264.7) peaked at 48 h, increasing 2.86-fold (3.14±0.4 μM) at 5 U/ml IFN-γ+5 μg/ml LPS, and 4.74-fold (5.46±0.30 μM) at 10 U/ml IFN-γ+10 μg/ml LPS compared to the non-activated controls (1.15±0.02 μM). The other two cell lines, J774A.1 macrophages and N11 microglia, showed a similar response. We suggest that inflammation increases MGO production, possibly exacerbating arterial stiffness, cardiovascular complications, and diabetes-related cognitive decline.
Background Altered epigenetic profiles are a feature of intestinal diseases, including ulcerative colitis and Crohn’s disease. DNA methylation studies in these diseases have utilised intestinal mucosal tissue or blood which can be difficult to collect, particularly for large-scale research studies. Saliva is an attractive alternative for epigenetic studies as it is easy to collect and provides high quality methylation profiles. The aim of the study was to determine the utility of saliva as an alternative for DNA methylation studies of intestinal disorders. Results DNA methylation in saliva and intestinal mucosa samples were compared in individuals ( n = 10) undergoing endoscopies using the Illumina Infinium Methylation 450 K Beadchip array. We found that DNA methylation was correlated between tissue types within an individual (Pearson correlation co-efficient r = 0.92 to 0.95, p < 0.001). Of the 48,541 probes (approximately 11% of CpG sites) that were differentially methylated between saliva and intestinal mucosa (adjusted p < 0.001, |Δβ| ≥ 20%), these mapped to genes involved in tissue-specific pathways, including the apelin signalling and oxytocin pathways which are important in gastrointestinal cytoprotection and motility. Conclusions This study suggests that saliva has the potential to be used as an alternate DNA source to invasive intestinal mucosa for DNA methylation research into intestinal conditions. Electronic supplementary material The online version of this article (10.1186/s12864-019-5553-0) contains supplementary material, which is available to authorized users.
Telomere length is widely considered as a marker of biological aging. Clinical studies have reported associations between reduced telomere length and hypertension. The aim of this study was to compare telomere length in hypertensive and normotensive mice at pre-disease and established disease time points to determine whether telomere length differs between the strains before and after the onset of disease. Genomic DNA was extracted from kidney and heart tissues of 4-, 12-, and 20-week-old male hypertensive (BPH/2J) and normotensive (BPN/3J) mice. Relative telomere length (T/S) was measured using quantitative PCR. Age was inversely correlated with telomere length in both strains. In 4-week-old pre-hypertensive animals, no difference in T/S was observed between BPH/2J and BPN/3J animals in kidney or heart tissue (kidney p = 0.14, heart p = 0.06). Once the animals had established disease, at 12 and 20 weeks, BPH/2J mice had significantly shorter telomeres when compared to their age-matched controls in both kidney (12 weeks p < 0.001 and 20 weeks p = 0.004) and heart tissues (12 weeks p < 0.001 and 20 weeks p < 0.001). This is the first study to show that differences in telomere lengths between BPH/2J and BPN/3J mice occur after the development of hypertension and do not cause hypertension in the BPH/2J mice.
The aim of this study was to identify indicators of coeliac disease (CD) in an Australian cohort, beyond the known gastrointestinal symptoms.Individuals were recruited from the general population and at the 2014 Gluten Free Expo in Sydney and in Melbourne, Australia. Data on their current health status including medical history, diagnosis for CD, and family history were collected. Multivariable logistic regression was used to identify independent predictors of CD. A weighted risk score system was then generated for the independent predictors, and a risk score was calculated for each individual.A total of 301 individuals were included in the study. We found an association between CD and having a family history of CD (odds ratio [OR] 7.6, 95%confidence interval [CI] 3.7–15.6), an autoimmune disorder (OR 2.1, 95%CI 1.1–4.1), anemia (OR 5.8, 95%CI 2.8–11.9), lactose intolerance (OR 4.5, 95%CI 1.2–17.7), and depression (OR 4.8, 95%CI 1.9–11.6). Risk score analysis found individuals in the medium (OR 4.8, 95%CI 2.5 to 9.3) and high-risk (OR 36.6, 95%CI 16.4 to 81.6) groups were significantly more likely to report having CD compared with those in the low-risk group.This study identifies a set of factors more commonly observed in individuals with CD, beyond the traditional gastrointestinal complaints. These include a family history of CD, the presence of another autoimmune disorder, anemia, lactose intolerance, and depression. A risk score was developed (Coeliac Risk COMPARE) which scores individuals based on the presence or absence of these additional symptoms and provides an additional screening tool when assessing whether the patient requires follow-up testing for CD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.