The importance of organic compounds in the oxidative capacity of the atmosphere, and as cloud condensation and ice-forming nuclei, has been recognized for several decades. Organic compounds comprise a significant fraction of the suspended matter mass, leading to local (e.g. toxicity, health hazards) and global (e.g. climate change) impacts. The state of knowledge of the physical chemistry of organic aerosols has increased during the last few decades. However, due to their complex chemistry and the multifaceted processes in which they are involved, the importance of organic aerosols, particularly bioaerosols, in driving physical and chemical atmospheric processes is still very uncertain and poorly understood. Factors such as solubility, surface tension, chemical impurities, volatility, morphology, contact angle, deliquescence, wettability, and the oxidation process are pivotal in the understanding of the activation processes of cloud droplets, and their chemical structures, solubilities and even the molecular configuration of the microbial outer membrane, all impact ice and cloud nucleation processes in the atmosphere. The aim of this review paper is to assess the current state of knowledge regarding chemical and physical characterization of bioaerosols with a focus on those properties important in nucleation processes. We herein discuss the potential importance (or lack thereof) of physical and chemical properties of bioaerosols and illustrate how the knowledge of these properties can be employed to study nucleation processes using a modeling exercise. We also outline a list of major uncertainties due to a lack of understanding of the processes involved or lack of available data. We will also discuss key issues of atmospheric significance deserving future physical chemistry research in the fields of bioaerosol characterization and microphysics, as well as bioaerosol modeling. These fundamental questions are to be addressed prior to any definite conclusions on the potential significance of the role of bioaerosols on physico-chemical atmospheric processes and that of climate.
Heterogeneous reactions on atmospheric aerosol surfaces are increasingly considered important in understanding aerosol-cloud nucleation and climate change. To understand potential reactions in polluted atmospheres, the co-adsorption of NO2 and toluene to magnetite (Fe3O4i.e. FeO·Fe2O3) nanoparticles at ambient conditions was investigated for the first time. The surface area, size distribution, and morphology of Fe3O4 nanoparticles were characterized by BET method and high-resolution transmission electron microscopy. Adsorption isotherms, collected by gas chromatography with flame ionization detection, showed that the presence of NO2 decreased the adsorption of toluene. The analyses of the surface chemical composition of Fe3O4 by X-ray photoelectron spectroscopy (XPS) reveal that, upon the addition of NO2, the surface is oxidized and a contribution at 532.5 ± 0.4 eV in the O1s spectrum appears, showing that NO2 likely competes with toluene by dissociating on Fe(2+) sites and forming NO3(-). Different competing effects were observed for oxidized Fe3O4; oxidation occurred when exposed solely to NO2, whereas, the mixture of toluene and NO2 resulted in a reduction of the surface i.e. increased Fe(2+)/Fe(3+). Analyses by time of flight secondary ion mass spectrometry further suggest toluene reacts with Fe(3+) sites forming oxygenated organics. Our results indicate that on reduced magnetite, NO2 is more reactive and competes with toluene; in contrast, on oxidized Fe3O4, toluene is more reactive. Because magnetite can assume a range of oxidation ratios in the environment, different competing interactions between pollutants like NO2 and toluene could influence atmospheric processes, namely, the formation of Fe(2+) and the formation of atmospheric oxidants.
In this work, we investigate the interaction of gaseous benzene, toluene, ethylbenzene, and o-xylene (BTEX) with Fe3O4 nanoparticles and demonstrate the potential application of Fe3O4 nanoparticles as adsorbents for BTEX. On the basis of X-ray diffraction, transmission electron microscopy, gas chromatography-mass spectrometry, and gas chromatography-flame ionization detection results, using toluene as a model compound, we find that adsorption is of a heterogeneous nature. At relatively high concentrations of toluene (300-2790 ppmv), X-ray photoelectron spectroscopy results indicate an increase in the divalent cations relative to the trivalent cations of Fe3O4 nanoparticles, which is possibly triggered by nanoscale effects. Removal efficiency experiments show that Fe3O4 nanoparticles (4 g) reduce 100 ppmv of BETX in air by 83 ± 8%, 95 ± 5%, 97 ± 1%, and 98 ± 2%, respectively. Comparable removal efficiencies were observed for recycled Fe3O4 nanoparticles. Toluene was also removed from a flow by Fe3O4 nanoparticles bound together with carboxymethyl cellulose, without releasing undesired aerosols. Fe3O4 nanoparticles (bare and as a composite) show potential as practical and environmental friendly materials for the remediation of BTEX from air.Experimental details for the determination of the removal efficiency (RE%), adsorption isotherm, stock gas mixture preparation, and byproduct analysis using GC-FID and GC-MS, X-ray photoelectron spectroscopy (Table S1) and X-ray diffraction (Table S2) characterization. This information is available free of charge via the Internet at http://pubs.acs.org/.
In the atmosphere, water vapor affects the interaction of trace gases and particles, influencing key processes including cloud nucleation, radiation, and heterogeneous chemistry. In this study, the effect of water vapor on the reactions of toluene and NO2 on magnetite, a component of atmospheric dust particles, is investigated using a suite of analytical techniques, namely, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF SIMS). Adsorption isotherms show that water vapor reduces the adsorption of toluene on magnetite. XPS spectra reveal that exposure to water vapor results in limited dissociation and molecular adsorption of water, and partial oxidation of magnetite. When toluene is added, enhanced dissociation of water and oxidation of the magnetite surface are observed, strongly suggesting the importance of intermolecular interactions between water molecules and the interaction of toluene with the H-bonded network of adsorbed water. Upon addition of NO2, enhanced oxidation and NO3 are observed in XPS and TOF SIMS spectra, respectively. In contrast, on oxidized magnetite, less dissociation and sorption of water is observed, and no enhanced oxidation is observed. Our results show that hydrated magnetite surfaces inactive toward further water dissociation can be reactivated depending on the surface chemistry, due to Fe 2+ . We show that the effect of water vapor on the interaction of toluene and NO2 on magnetite depends on the Fe 2+ /Fe 3+ ratio, which can vary under environmental conditions. Different reactivity of the Fe3O4 in dust can thus be expected, with implications on the fate of pollutants in the atmosphere.
Bio-organic chemicals are ubiquitous in the Earth's atmosphere and at air-snow interfaces, as well as in aerosols and in clouds. It has been known for centuries that airborne biological matter plays various roles in the transmission of disease in humans and in ecosystems. The implication of chemical compounds of biological origins in cloud condensation and in ice nucleation processes has also been studied during the last few decades, and implications have been suggested in the reduction of visibility, in the influence on oxidative potential of the atmosphere and transformation of compounds in the atmosphere, in the formation of haze, change of snow-ice albedo, in agricultural processes, and bio-hazards and bio-terrorism. In this review we critically examine existing observation data on bio-organic compounds in the atmosphere and in snow. We also review both conventional and cutting-edge analytical techniques and methods for measurement and characterisation of bio-organic compounds and specifically for microbial communities, in the atmosphere and snow. We also explore the link between biological compounds and nucleation processes. Due to increased interest in decreasing emissions of carbon-containing compounds, we also briefly review (in an Appendix) methods and techniques that are currently deployed for bio-organic remediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.