Numerous reports have described the effects induced by an electromagnetic field (EMF) in various cellular systems. The purposes of this study were to examine oxidative stress that promotes production of reactive oxygen species induced by a 900-megahertz (MHz) mobile phone and the possible ameliorating effects of vitamins E and C on endometrial tissue against EMF-induced endometrial impairment and apoptosis in rats. Animals were randomly grouped as follows: (1) sham-operated control group (n=8), (2) 900 MHz EMF-exposed group (n=8; 30 min/d for 30 d), and (3) 900 MHz EMF-exposed group, treated with vitamins E and C (n=8; 50 mg/kg intramuscularly and 20 mg/kg body weight intraperitoneally before daily EMF exposure). Malondialdehyde (an index of lipid peroxidation) was used as a marker of oxidative stress-induced endometrial impairment; Bcl-2, Bax, caspase-3, and caspase-8 were assessed immunohistochemically. In this study, increased malondialdehyde levels in endometrial tissue and apoptosis illustrated the role of the oxidative mechanism induced by exposure to a 900-MHz mobile phone-like device and vitamins E and C; via free radical scavenging and antioxidant properties, oxidative tissue injury and apoptosis were ameliorated in rat endometrium. In conclusion, exposure to 900-MHz radiation emitted by mobile phones may cause endometrial apoptosis and oxidative stress, but treatment with vitamins E and C can diminish these changes and may have a beneficial effect in preventing endometrial changes in rats.
There is a growing public concern about the potential human health hazard caused by exposure to electromagnetic radiation (EMR). The objective of this study is to investigate the effects of 2450 mhz electromagnetic field on apoptosis and histopathological changes on rat testis tissue. Twelve-week-old male Wistar Albino rats were used in this study. Eighteen rats equally divided into three different groups which were named group I, II and III. Cage control (group I), sham control (group II) and 2.45 GHz EMR (group III) groups were formed. Group III were exposed to 2.45 GHz EMR, at 3.21 W/kg specific absorption rate for 60 minutes/ day for 28 days. There was no difference among the groups for the diameter of the seminiferous tubules, pyknotic, karyolectic and karyotic cells. However, the number of Leydig cells of testis tissue of the rats in group III was significantly reduced comparing with the group I (p < 0.05). Estimation of spermatogenesis using the Johnsen testicular biopsy score revealed that the difference between groups is statistically significant. The level of TNF-α, Caspase-3 and Bcl-2 were compared, and no significant difference was found between the groups. When Bax apoptosis genes and Caspase-8 apoptosis enzyme were compared, there were significant differences between the groups (p < 0.05). Electromagnetic field affects spermatogenesis and causes to apoptosis due to the heat and other stress-related events in testis tissue.
There are numerous reports on the effects of electromagnetic radiation (EMR) in various cellular systems. Mechanisms of adverse effects of EMR indicate that reactive oxygen species (ROS) may play a role in the biological effects of this radiation. The aims of this study were to examine 900 MHz mobile phone-induced oxidative stress that promotes production of ROS and to investigate the role of vitamins E and C, which have antioxidant properties, on endometrial tissue against possible 900 MHz mobile phone-induced endometrial impairment in rats. The animals were randomly grouped (eight each) as follows: 1) Control group (without stress and EMR, Group I), 2) sham-operated rats stayed without exposure to EMR (exposure device off, Group II), 3) rats exposed to 900 MHz EMR (EMR group, Group III) and 4) a 900 MHz EMR exposed + vitamin-treated group (EMR + Vit group, Group IV). A 900 MHz EMR was applied to EMR and EMR + Vit group 30 min/day, for 30 days using an experimental exposure device. Endometrial levels of nitric oxide (NO, an oxidant product) and malondialdehyde (MDA, an index of lipid peroxidation), increased in EMR exposed rats while the combined vitamins E and C caused a significant reduction in the levels of NO and MDA. Likewise, endometrial superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities decreased in EMR exposed animals while vitamins E and C caused a significant increase in the activities of these antioxidant enzymes. In the EMR group histopathologic changes in endometrium, diffuse and severe apoptosis was present in the endometrial surface epithelial and glandular cells and the stromal cells. Diffuse eosinophilic leucocyte and lymphocyte infiltration were observed in the endometrial stroma whereas the combination of vitamins E and C caused a significant decrease in these effects of EMR. It is concluded that oxidative endometrial damage plays an important role in the 900 MHz mobile phone-induced endometrial impairment and the modulation of oxidative stress with vitamins E and C reduces the 900 MHz mobile phone-induced endometrial damage both at biochemical and histological levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.