• Germline gain-of-function mutations in STAT3 lead to lymphoproliferation and autoimmunity with prominent cytopenias.• Mutations in STAT3 cause altered regulatory T cells and cytokine signaling.Germline loss-of-function mutations in the transcription factor signal transducer and activator of transcription 3 (STAT3) cause immunodeficiency, whereas somatic gain-offunction mutations in STAT3 are associated with large granular lymphocytic leukemic, myelodysplastic syndrome, and aplastic anemia. Recently, germline mutations in STAT3 have also been associated with autoimmune disease. Here, we report on 13 individuals from 10 families with lymphoproliferation and early-onset solid-organ autoimmunity associated with 9 different germline heterozygous mutations in STAT3. Patients exhibited a variety of clinical features, with most having lymphadenopathy, autoimmune cytopenias, multiorgan autoimmunity (lung, gastrointestinal, hepatic, and/or endocrine dysfunction), infections, and short stature. Functional analyses demonstrate that these mutations confer a gain-of-function in STAT3 leading to secondary defects in STAT5 and STAT1 phosphorylation and the regulatory T-cell compartment. Treatment targeting a cytokine pathway that signals through STAT3 led to clinical improvement in 1 patient, suggesting a potential therapeutic option for such patients. These results suggest that there is a broad range of autoimmunity caused by germline STAT3 gain-of-function mutations, and that hematologic autoimmunity is a major component of this newly described disorder. Some patients for this study were enrolled in a trial registered at www.clinicaltrials.gov as #NCT00001350. (Blood. 2015;125(4):591-599)
We report that mice deficient for the hematopoietic-specific, actin-bundling protein L-plastin (LPL) succumb rapidly to intratracheal pneumococcal infection. The increased susceptibility of LPL ؊/؊ mice to pulmonary pneumococcal challenge correlated with reduced numbers of alveolar macrophages, consistent with a critical role for this cell type in the immediate response to pneumococcal infection. LPL ؊/؊ mice demonstrated a very early clearance defect, with an almost 10-fold-higher bacterial burden in the bronchoalveolar lavage fluid 3 h following infection. Clearance of pneumococci from the alveolar space in LPL ؊/؊ mice was defective compared to that in Rag1 ؊/؊ mice, which lack all B and T lymphocytes, indicating that innate immunity is defective in LPL ؊/؊ mice. We did not identify defects in neutrophil or monocyte recruitment or in the production of inflammatory cytokines or chemokines that would explain the early clearance defect. However, efficient alveolar macrophage regeneration following irradiation required LPL. We thus identify LPL as being key to alveolar macrophage development and essential to an effective antipneumococcal response. Further analysis of LPL ؊/؊ mice will illuminate critical regulators of the generation of alveolar macrophages and, thus, effective pulmonary innate immunity.
Purpose Autoimmune diseases are thought to be caused by a loss of self-tolerance of the immune system. One candidate marker of immune dysregulation in autoimmune disease is the presence of increased double negative T cells (DNTs) in the periphery. DNTs are characteristically elevated in autoimmune lymphoproliferative syndrome, a systemic autoimmune disease caused by defective lymphocyte apoptosis due to Fas pathway defects. DNTs have also been found in the peripheral blood of adult patients with systemic lupus erythematosus (SLE), where they may be pathogenic. DNTs in children with autoimmune disease have not been investigated. Methods We evaluated DNTs in pediatric patients with SLE, mixed connective tissue disease (MCTD), juvenile idiopathic arthritis (JIA), or elevated antinuclear antibody (ANA) but no systemic disease. DNTs (CD3+CD56−TCRαβ+CD4−CD8−) from peripheral blood mononuclear cells were analyzed by flow cytometry from 54 pediatric patients including: 23 SLE, 15 JIA, 11 ANA and 5 MCTD compared to 28 healthy controls. Results Sixteen cases (29.6%) had elevated DNTs (≥ 2.5% of CD3+CD56−TCRαβ+ cells) compared to 1 (3.6%) control. Medication usage including cytotoxic drugs and absolute lymphocyte count were not associated with DNT levels, and percentages of DNTs were stable over time. Analysis of multiple phenotypic and activation markers showed increased CD45RA expression on DNTs from patients with autoimmune disease compared to controls. Conclusion DNTs are elevated in a subset of pediatric patients with autoimmune disease and additional investigations are required to determine their precise role in autoimmunity.
Enniatin B (ENN B) and Beauvericin (BEA) are cyclohexadepsipeptides that can be isolated from Fusarium and Beauveria bassiana, respectively. Both compounds are cytotoxic and ionophoric. In the present study, the mechanism of cell death induced by these compounds was investigated. Epidermal carcinoma-derived cell line KB-3-1 cells were treated with different concentrations of these compounds. The extracellular secretion of cathepsin B increased in a concentration-dependent manner, and the lysosomal staining by lysotracker red was reduced upon the treatment with any of the compounds. However, the extracellular secretion of cathepsin L and cathepsin D were not affected. Inhibition of cathepsin B with specific inhibitor CA074 significantly reduced the cytotoxic effect of both compounds, while inhibition of cathepsin D or cathepsin L did not influence the cytotoxic activities of both compounds. In vitro labelling of lysosomal cysteine cathepsins with Ethyl (2S, 3S)-epoxysuccinate-Leu-Tyr-Acp-Lys (Biotin)-NH2 (DCG04) was not affected in case of cathepsin L upon the treatment with both compounds, while it was significantly reduced in case of cathepsin B. In conclusion, ENN B and BEA increase lysosomal Ph, which inhibits delivery of cathepsin B from Golgi to lysosomes, thereby inducing cathepsin B release in cytosol, which activates caspases and hence the apoptotic pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.