Abstract-In this paper, we consider the problem of multicentralized Cooperative Localization (CL) under severe communication constraints, i.e., when each robot can communicate only a single bit per real-valued (analog) measurement. Existing approaches, such as those based on the Sign-of-Innovation Kalman filter (SOI-KF) and its variants, require each robot to process quantized versions of both its local (i.e., recorded by its own sensors) and remote (i.e., collected by other robots) measurements. This results in suboptimal performance since each robot has to discard information that is available in its own analog measurements. To address this limitation, we introduce a novel hybrid estimation scheme that enables each robot to process both quantized (from remote sensors) and analog (from its own sensors) measurements. Specifically, we first present the hybrid (H)-SOI-KF, a direct extension of the SOI-KF, for processing both types of measurements. Secondly, we introduce the modified (M)H-SOI-KF, that uses an asymmetric encoding/decoding scheme to incorporate additional information during quantization (based on the hybrid estimates locally available to each robot), resulting in substantial accuracy improvement. Lastly, we present extensive simulations which demonstrate that both hybrid estimators not only outperform the SOI-KF, but also achieve accuracy comparable to that of the standard (analog) centralized Kalman filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.