Equol [7-hydroxy-3-(4'-hydroxyphenyl)-chroman] is a nonsteroidal estrogen of the isoflavone class. It is exclusively a product of intestinal bacterial metabolism of dietary isoflavones and it possesses estrogenic activity, having affinity for both estrogen receptors, ERalpha and ERbeta. Equol is superior to all other isoflavones in its antioxidant activity. It is the end product of the biotransformation of the phytoestrogen daidzein, one of the two main isoflavones found in abundance in soybeans and most soy foods. Once formed, it is relatively stable; however, equol is not produced in all healthy adults in response to dietary challenge with soy or daidzein. Several recent dietary intervention studies examining the health effects of soy isoflavones allude to the potential importance of equol by establishing that maximal clinical responses to soy protein diets are observed in people who are good "equol-producers." It is now apparent that there are two distinct subpopulations of people and that "bacterio-typing" individuals for their ability to make equol may hold the clue to the effectiveness of soy protein diets in the treatment or prevention of hormone-dependent conditions. In reviewing the history of equol, its biological properties, factors influencing its formation and clinical data, we propose a new paradigm. The clinical effectiveness of soy protein in cardiovascular, bone and menopausal health may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic isoflavone, equol. The failure to distinguish those subjects who are "equol-producers" from "nonequol producers" in previous clinical studies could plausibly explain the variance in reported data on the health benefits of soy.
The pharmacokinetic behavior of naturally occurring isoflavones has been determined for the first time in healthy adults. We compared plasma kinetics of pure daidzein, genistein and their beta-glycosides administered as a single-bolus dose to 19 healthy women. This study demonstrates differences in the pharmacokinetics of isoflavone glycosides compared with their respective beta-glycosides. Although all isoflavones are efficiently absorbed from the intestinal tract, there are striking differences in the fate of aglycones and beta-glycosides. Mean time to attain peak plasma concentrations (t(max)) for the aglycones genistein and daidzein was 5.2 and 6.6 h, respectively, whereas for the corresponding beta-glycosides, the t(max) was delayed to 9.3 and 9.0 h, respectively, consistent with the residence time needed for hydrolytic cleavage of the glycoside moiety for bioavailability. The apparent volume of distribution of isoflavones confirms extensive tissue distribution after absorption. Plasma genistein concentrations are consistently higher than daidzein when equal amounts of the two isoflavones are administered, and this is accounted for by the more extensive distribution of daidzein (236 L) compared with genistein (161 L). The systemic bioavailability of genistein [mean AUC = 4.54 microg/(mL x h)] is much greater than that of daidzein [mean AUC = 2.94 microg/(mL x h)], and bioavailability of these isoflavones is greater when ingested as beta-glycosides rather than aglycones as measured from the area under the curve of the plasma appearance and disappearance concentrations. The pharmacokinetics of methoxylated isoflavones show distinct differences depending on the position of the methoxyl group in the molecule. Glycitin, found in two phytoestrogen supplements, underwent hydrolysis of the beta-glycoside moiety and little further biotransformation, leading to high plasma glycitein concentrations. Biochanin A and formononetin, two isoflavones found in one phytoestrogen supplement, were rapidly and efficiently demethylated, resulting in high plasma genistein and daidzein concentrations typically observed after the ingestion of soy-containing foods. These differences in pharmacokinetics and metabolism have implications for clinical studies because it cannot be assumed that all isoflavones are comparable in their pharmacokinetics and bioavailability. An analysis of 33 phytoestrogen supplements and extracts revealed considerable differences in the isoflavone content from that claimed by the manufacturers. Plasma concentrations of isoflavones show marked qualitative and quantitative differences depending on the type of supplement ingested. These studies indicate a need for improvement in quality assurance and standardization of such products.
Isoflavone glycosides are not absorbed intact across the enterocyte of healthy adults, and their bioavailability requires initial hydrolysis of the sugar moiety by intestinal beta-glucosidases for uptake to the peripheral circulation.
Humans have acquired an ability to exclusively synthesize S-equol from the precursor soy isoflavone daidzein, and it is significant that, unlike R-equol, this enantiomer has a relatively high affinity for estrogen receptor beta.
SUMMARY:It is generally not known that most commercial rodent diets are formulated with soy protein and deliver large daily doses of isoflavones to animals throughout their lifespan, including the in utero period. Here, we demonstrate that isoflavones are bioavailable and show that commercial rodent diets universally used by animal facilities lead to very high steady-state serum isoflavone concentrations in adult rats (2613 Ϯ 873 ng/mL) and mice (2338 Ϯ 531 ng/mL), exceeding the animal's endogenous estrogen level by 30,000-to 60,000-fold. We demonstrate the maternal-fetal intrauterine transfer of isoflavones in animals fed a standard Purina 5001 soy-containing diet and show that newborn rat pups have high serum isoflavones levels (540 Ϯ 174 ng/mL) that are maintained throughout the suckling period by passage of isoflavones into maternal milk. These findings have profound implications for all animal experiments, including multigenerational studies and studies of transgenic animals, especially if biochemical or morphological end-points are influenced by the hormonal or nonhormonal properties of phytoestrogens. These compounds have the potential to modulate genotypic and phenotypic expression in general, and therefore, all investigators should be vigilant to the phytoestrogen composition of commercial rodent diets because there is a history of potent biological effects in larger animals and in humans from high circulating isoflavone concentrations. (Lab Invest 2001, 81:735-747).A lthough phytoestrogens are ubiquitous in the plant kingdom, it is soybeans and foods made with purified soy proteins that are by far the greatest contributors of isoflavones to animal and human diets (Coward et
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.