To meet consumers’ demand for natural foods, edible oil producers and food processing industries are searching for alternatives to synthetic antioxidants to protect oils against oxidation. Antioxidant compounds extracted from different plant parts (e.g., flowers, leaves, roots, and seeds) or sourced from agri-food industries, including residues left after food processing, attract consumers for their health properties and natural origins. This review, starting from a literature research analysis, highlights the role of natural antioxidants in the protection of edible oils against oxidation, with an emphasis on the emerging and sustainable strategies to preserve oils against oxidative damage. Sustainability and health are the main concerns of food processing industries. In this context, the aim of this review is to highlight the emerging strategies for the enrichment of edible oils with biomolecules or extracts recovered from plant sources. The use of extracts obtained from vegetable wastes and by-products and the blending with oils extracted from various oil-bearing seeds is also pointed out as a sustainable approach. The safety concerns linked to the use of natural antioxidants for human health are also discussed. This review, using a multidisciplinary approach, provides an updated overview of the chemical, technological, sustainability, and safety aspects linked to oil protection.
Yarrowia lipolytica is known to have the ability to assimilate hydrophobic substrates like triglycerides, fats, and oils, and to produce single-cell oils, lipases, and organic acids. The aim of the present study was to investigate the effects of different oil sources (borage, canola, sesame, Echium, and trout oils) and oil industry residues (olive pomace oil, hazelnut oil press cake, and sunflower seed oil cake) on the growth, lipid accumulation, and lipase and citric acid production by Y. lipolytica YB 423-12. The maximum biomass and lipid accumulation were observed with linseed oil. Among the tested oil sources and oil industry residues, hazelnut oil press cake was the best medium for lipase production. The Y. lipolytica YB 423-12 strain produced 12.32 ± 1.54 U/mL (lipase activity) of lipase on hazelnut oil press cake medium supplemented with glucose. The best substrate for citric acid production was found to be borage oil, with an output of 5.34 ± 0.94 g/L. The biotechnological production of valuable metabolites such as single-cell oil, lipase, and citric acid could be achieved by using these wastes and low-cost substrates with this strain. Furthermore, the cost of the bio-process could also be significantly reduced by the utilization of various low-cost raw materials, residues, wastes, and renewable resources as substrates for this yeast.
Human milk fat (HMF) is a perfect nutritional source that includes all the required ingredients which are necessary for the growth of infants up to 6 months. Although its composition may differ among mothers or during lactation stage, its unique triacylglycerol (TAG) structure remains constant which is characterized by the presence of palmitic acid (PA) at the sn‐2 position. Previous reports provided convincing information of higher PA and calcium absorption and efficient use of dietary energy when at this specific position in the TAG moiety than when PA is at the sn‐1,3 positions. During the design of structured lipids (SLs) intended for infant nutrition, this unique property is taken into consideration. Human milk fat substitutes (HMFS) enriched with important fatty acids such as omega‐3 and omega‐6 fatty acids are intended to better mimic the functions of HMF as well as provide associated health benefits. The use of microencapsulation technology and novel technologies such as ultrasound technology in conjunction with SL production and enzyme‐catalyzed reactions are evolving and ongoing issues in infant formula production. Therefore, further studies should be directed towards new process improvements in order to increase the functional properties and oxidative stabilities of HMFS. Novel technologies in lipid biotechnology related to HMFS preparation should also be explored.
In recent years, ready-to eat breakfast cereals prepared with fruit ingredients have gained particular attention due to their polyphenolic contents and health promoting effects. In this study, the matrix effect of blueberry, oat meal, whole milk or skimmed milk on polyphenols, antioxidative potential as well as their potential bioavailability were investigated. The phenolic properties of whole milk, skimmed milk, blueberry and oat meal were investigated and the changes in combinations of the ingredients were determined. Milk addition decreased the total phenolic, flavonoid and anthocyanin content of samples statistically and had negative effect on antioxidant activity showing differences among different methods. According to HPLC results, it was not possible to detect catechin in mixtures due to milk addition. In vitro digestion method was used to determine potential bioavailability of phenolic compounds. According to in vitro digestion procedure results, whole or skimmed milk did not affect the total phenolic content of the proportion passing to the blood from intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.