The generation of artifical textures is a useful function in image synthesis systems. The purpose of this paper is to describe the use of the random neural network (RN) model developed by Gelenbe to generate various textures having different characteristics. An eight parameter model, based on a choice of the local interaction parameters between neighbouring neurons in the plane, is proposed. Numerical iterations of the field equations of the neural network model, starting with a randomly generated gray-level image, are shown to produce textures having different desirable features such as granularity, inclination, and randomness. The experimental evaluation shows that the random network provides good results, at a computational cost less than that of other approaches such as Markov random fields. Various examples of textures generated by our method are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.