In this paper, we propose a novel deep learning framework for anatomy segmentation and automatic landmarking. Specifically, we focus on the challenging problem of mandible segmentation from cone-beam computed tomography (CBCT) scans and identification of 9 anatomical landmarks of the mandible on the geodesic space. The overall approach employs three inter-related steps. In step 1, we propose a deep neural network architecture with carefully designed regularization, and network hyper-parameters to perform image segmentation without the need for data augmentation and complex postprocessing refinement. In step 2, we formulate the landmark localization problem directly on the geodesic space for sparselyspaced anatomical landmarks. In step 3, we propose to use a long short-term memory (LSTM) network to identify closelyspaced landmarks, which is rather difficult to obtain using other standard detection networks. The proposed fully automated method showed superior efficacy compared to the state-of-theart mandible segmentation and landmarking approaches in craniofacial anomalies and diseased states. We used a very challenging CBCT dataset of 50 patients with a high-degree of craniomaxillofacial (CMF) variability that is realistic in clinical practice. Complementary to the quantitative analysis, the qualitative visual inspection was conducted for distinct CBCT scans from 250 patients with high anatomical variability. We have also shown feasibility of the proposed work in an independent dataset from MICCAI Head-Neck Challenge (2015) achieving the state-of-the-art performance. Lastly, we present an in-depth analysis of the proposed deep networks with respect to the choice of hyper-parameters such as pooling and activation functions.
Deep learning has demonstrated tremendous revolutionary changes in the computing industry and its effects in radiology and imaging sciences have begun to dramatically change screening paradigms. Specifically, these advances have influenced the development of computer-aided detection and diagnosis (CAD) systems. These technologies have long been thought of as "second-opinion" tools for radiologists and clinicians. However, with significant improvements in deep neural networks, the diagnostic capabilities of learning algorithms are approaching levels of human expertise (radiologists, clinicians etc.), shifting the CAD paradigm from a "second opinion" tool to a more collaborative utility. This paper reviews recently developed CAD systems based on deep learning technologies for breast cancer diagnosis, explains their superiorities with respect to previously established systems, defines the methodologies behind the improved achievements including algorithmic developments, and describes remaining challenges in breast cancer screening and diagnosis. We also discuss possible future directions for new CAD models that continue to change as artificial intelligence algorithms evolve.
Mandible bone segmentation from computed tomography (CT) scans is challenging due to mandible's structural irregularities, complex shape patterns, and lack of contrast in joints. Furthermore, connections of teeth to mandible and mandible to remaining parts of the skull make it extremely difficult to identify mandible boundary automatically. This study addresses these challenges by proposing a novel framework where we define the segmentation as two complementary tasks: recognition and delineation. For recognition, we use random forest regression to localize mandible in 3D. For delineation, we propose to use 3D gradient-based fuzzy connectedness (FC) image segmentation algorithm, operating on the recognized mandible sub-volume. Despite heavy CT artifacts and dental fillings, consisting half of the CT image data in our experiments, we have achieved highly accurate detection and delineation results. Specifically, detection accuracy more than 96% (measured by union of intersection (UoI)), the delineation accuracy of 91% (measured by dice similarity coefficient), and less than 1 mm in shape mismatch (Hausdorff Distance) were found.
Purpose: We perform anatomical landmarking for craniomaxillofacial (CMF) bones without explicitly segmenting them. Toward this, we propose a simple, yet efficient, deep network architecture, called relational reasoning network (RRN), to accurately learn the local and the global relations among the landmarks in CMF bones; specifically, mandible, maxilla, and nasal bones.Approach: The proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units. For a given few landmarks as input, RRN treats the landmarking process similar to a data imputation problem where predicted landmarks are considered missing.Results: We applied RRN to cone-beam computed tomography scans obtained from 250 patients. With a fourfold cross-validation technique, we obtained an average root mean squared error of <2 mm per landmark. Our proposed RRN has revealed unique relationships among the landmarks that help us in inferring informativeness of the landmark points. The proposed system identifies the missing landmark locations accurately even when severe pathology or deformations are present in the bones.Conclusions: Accurately identifying anatomical landmarks is a crucial step in deformation analysis and surgical planning for CMF surgeries. Achieving this goal without the need for explicit bone segmentation addresses a major limitation of segmentation-based approaches, where segmentation failure (as often is the case in bones with severe pathology or deformation) could easily lead to incorrect landmarking. To the best of our knowledge, this is the first-of-itskind algorithm finding anatomical relations of the objects using deep learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.