Several studies reveal that diabetes doubles the odds of comorbid depression with evidence of a pro-inflammatory state underlying its vascular complications. Indeed, little information is available about vascular effects of antidepressant drugs in diabetes. Method: We investigated the effect of chronic administration of fluoxetine “FLU” and imipramine “IMIP” on behavioral, metabolic and vascular abnormalities in diabetic and non-diabetic rats exposed to chronic restraint stress (CRS). Results: Both diabetes and CRS induced depressive-like behavior which was more prominent in diabetic/depressed rats; this was reversed by chronic treatment with FLU and IMIP in a comparable manner. Diabetic and non-diabetic rats exposed to CRS exhibited abnormalities in glucose homeostasis, lipid profile and vascular function, manifested by decreased endothelium-dependent relaxation, increased systolic blood pressure and histopathological atherosclerotic changes. Vascular and metabolic dysfunctions were associated with significant increase in aortic expression of TLR-4, and pro-inflammatory cytokines (TNF-α and IL-1ß). FLU ameliorated these metabolic, vascular and inflammatory abnormalities, while IMIP induced either no change or even worsening of some parameters. Conclusion: FLU has favorable effect over IMIP on metabolic, vascular and inflammatory aberrations associated with DM and CRS in Wistar rats, clarifying the preference of FLU over IMIP in management of comorbid depression in diabetic subjects.
Schizophrenia doubles the odds of diabetes, and atypical antipsychotics (AAPs) also increase risk of diabetes. Indeed, little is known about the effects of AAPs on vascular dysfunctions associated with diabetes. This study aimed to determine the effects of risperidone (RISP) and paliperidone (PALI) on the vascular function of diabetic rats. Diabetes was induced by feeding with a high-fat diet followed by the administration of streptozotocin (35 mg·(kg body mass)(-1), by intraperitoneal injection). Rats received RISP or PALI (1.25 mg·kg(-1)·d(-1), per os) for 3 weeks. Endothelium-dependent relaxation, systolic blood pressure, lipid profile, insulin resistance, and adhesion molecules, vascular cell-adhesion-molecule-1 (VCAM-1), intracellular-adhesion-molecule-1 (ICAM-1), and E-selectin were investigated. RISP significantly worsened the impaired endothelium-dependent relaxation of diabetic aortic rings with upregulation of the adhesion molecules VCAM-1, ICAM-1, and E-selectin, and proinflammatory cytokines MPC-1 and TNF-α. RISP augmented the metabolic dysfunctions and reduced insulin sensitivity in the insulin tolerance test as well as HOMA-IR. PALI produced insignificant effects on vascular and metabolic aberrations. Our results suggest that RISP, but not PALI, aggravates the metabolic abnormalities and vascular dysfunction associated with diabetes, which may be mediated by upregulation of VCAM-1, ICAM-1, and E-selectin. Nevertheless, future investigation for the possible mechanisms underlying the difference noticed between the 2 AAPs is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.