Association of selected essential (Co, Cu, Fe, Mn, Mo, Se, and Zn) and nonessential (Cd, Pb) trace elements with cytosolic proteins of different molecular masses was described for the liver of European chub (Squalius cephalus) from weakly contaminated Sutla River in Croatia. The principal aim was to establish basic trace element distributions among protein fractions characteristic for the fish living in the conditions of low metal exposure in the water. The fractionation of chub hepatic cytosols was carried out by size exclusion high performance liquid chromatography (SE-HPLC; Superdex™ 200 10/300 GL column), and measurements were performed by high resolution inductively coupled plasma mass spectrometry (HR ICP-MS). Elution profiles of essential elements were mostly characterized by broad peaks covering wide range of molecular masses, as a sign of incorporation of essential elements in various proteins within hepatic cytosol. Exceptions were Cu and Fe, with elution profiles characterized by sharp, narrow peaks indicating their probable association with specific proteins, metallothionein (MT), and ferritin, respectively. The main feature of the elution profile of nonessential metal Cd was also single sharp, narrow peak, coinciding with MT elution time, and indicating almost complete Cd detoxification by MT under the conditions of weak metal exposure in the water (dissolved Cd concentration ≤0.3 μg L(-1)). Contrary, nonessential metal Pb was observed to bind to wide spectrum of proteins, mostly of medium molecular masses (30-100 kDa), after exposure to dissolved Pb concentration of ~1 μg L(-1). The obtained information within this study presents the starting point for identification and characterization of specific metal/metalloid-binding proteins in chub hepatic cytosol, which could be further used as markers of metal/metalloid exposure or effect on fish.
Quantification of histopathological alterations in the gills of Vardar chub (Squalius vardarensisKaraman) was performed in 2012 in rivers of north-eastern Macedonia, with the aim to examine the effects of water quality in the rivers (Zletovska and Kriva River -impacted by active Pb/Zn mines; Bregalnica River -contaminated by agricultural waste). The biological alterations in chub were classified as: circulatory disturbances, regressive and progressive changes, but their severity differed.Altogether the mildest changes were observed in the gills of chub from the Bregalnica River, a less polluted river, whereas mining impacted rivers were characterized by more severe alterations. In the gills of chub from the Zletovska River, which is highly contaminated with numerous metals, sulphates and chlorides, the highest lesion indices were found for the regressive changes of both epithelium and supporting tissue, with typical lesions referring to atrophy, thinning and lifting of epithelial cells, necrosis of epithelium and chloride cells, as well as deformations of lamellar cartilaginous base. Gill damages of chub from the Kriva River were overall milder compared to the Zletovska River, in accordance with pollution status. In the gills of chub from that river, progressive changes were more pronounced, specifically severe hyperplasia of mucous cells and epithelium in the interlammellar space, leading to fusion of lamellae, as well as hypertrophy of chloride cells. The comparison between seasons indicated higher intensity of progressive changes in all three rivers in autumn, when water level was very low, and consequently, water contamination was more pronounced due to concentration effect. The pattern and severity of histopathological alterations in the chub gills reflected differences in contamination levels and type of contaminants in different rivers and sampling periods, and thus have been proven as a valuable indicator of water quality.
Cytosolic distributions of nonessential metals Cd and Tl and seven essential elements among compounds of different molecular masses were studied in the liver of brown trout (Salmo trutta) from the karstic Krka River in Croatia. Analyses were done by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Common feature of Cd and Tl, as highly toxic elements, was their distribution within only two narrow peaks. The increase of cytosolic Cd concentrations was reflected in marked increase of Cd elution within low molecular mass peak (maximum at ∼15 kDa), presumably containing metallothioneins (MTs), which indicated successful Cd detoxification in brown trout liver under studied exposure conditions. Contrary, the increase of cytosolic Tl concentrations was reflected in marked increase of Tl elution within high molecular mass peak (maximum at 140 kDa), which probably indicated incomplete Tl detoxification. Common feature of the majority of studied essential elements was their distribution within more peaks, often broad and not well resolved, which is consistent with their numerous physiological functions. Among observed associations of essential metals/nonmetal to proteins, the following could be singled out: Cu and Zn association to MTs, Fe association to storage protein ferritin, and Se association to compounds of very low molecular masses (<5 kDa). The obtained results present the first step towards identification of metal-binding compounds in hepatic cytosol of brown trout, and thus a significant contribution to better understanding of metal fate in the liver of that important bioindicator species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.