The aim of the present study was to compare concentrations of IgG, IgA, IgM and IgD in both serum and saliva samples from smoking and non‐smoking individuals using a protein microarray assay. The findings were also compared to previous studies. Serum and saliva were collected from 48 smoking male individuals and 48 age‐matched never‐smoker male individuals. The protein microarray assays for detection of human IgG, IgM, IgA and IgD were established and optimized using Ig class‐specific affinity‐purified goat anti‐human Ig‐Fc capture antibodies and horseradish peroxidase (HRP)‐conjugated goat anti‐human Ig‐Fc detection antibodies. The Ig class specificity of the microarray assays was verified, and the optimal dilutions of serum and saliva samples were determined for quantification of Ig levels against standard curves. We found that smoking is associated with reduced IgG concentrations and enhanced IgA concentrations in both serum and saliva. By contrast, smoking differentially affected IgM concentrations—causing increased concentrations in serum, but decreased concentrations in saliva. Smoking was associated with decreased IgD concentrations in serum and did not have a significant effect on the very low IgD concentrations in saliva. Thus, cigarette smoking differentially affects the levels of Ig classes systemically and in the oral mucosa. Although there is variation between the results of different published studies, there is a consensus that smokers have significantly reduced levels of IgG in both serum and saliva. A functional antibody deficiency associated with smoking may compromise the body's response to infection and result in a predisposition to the development of autoimmunity.
Macrophages are one of the most important cells in the immune system. They act as links between innate and adaptive immunities. In this study, the aim was to examine thymoquinone effects on the immunological properties of different macrophages. Peripheral blood mononuclear cells were isolated from blood from healthy volunteers by negative selection of monocytes that had been cultured for seven days to differentiate into macrophages. Cells were cultured with or without the presence of thymoquinone (TQ), which was used in two different concentrations (50 μg/mL and 100 μg/mL. Cluster of differentiation 80 (CD80), cluster of differentiation 86 (CD86), and human leukocyte antigen DR isotype (HLA-DR) were measured by flow cytometry, and the secretion of interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α) was measured. Cells were also tested for their E. coli phagocytosis abilities. The data showed that the expression of HLA-DR was significantly higher in cells treated with 100 μL/mL TQ. In addition, IFN-γ concentration increased in the 100 μg/mL TQ-treated cells. The macrophage phagocytosis results showed a significant difference in 50 μg/mL TQ-treated cells compared to the controls. TQ may enhance the immunological properties of macrophages during the early stages of innate immunity by activating phagocytosis ability and by increasing the expression of HLA-DR and the secretion of IFN-γ, which may enhance the antigen-presentation capabilities of macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.