The aim of this study is to develop an automatic speech recognition system in order to classify sibilant Arabic consonants into two groups: alveolar consonants and post-alveolar consonants. The proposed method is based on the use of the energy distribution, in a consonant-vowel type syllable, as an acoustic cue. The application of this method on our own corpus reveals that the amount of energy included in a vocal signal is a very important parameter in the characterization of Arabic sibilant consonants. For consonants classifications, the accuracy achieved to identify consonants as alveolar or post-alveolar is 100%. For post-alveolar consonants, the rate is 96% and for alveolar consonants, the rate is over 94%. Our classification technique outperformed existing algorithms based on support vector machines and neural networks in terms of classification rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.