We review the state-of-the-art approaches currently applied in myriapod taxonomy, and we describe, for the first time, a new species of millipede (Ommatoiulus avatar n. sp., family Julidae) using high-resolution X-ray microtomography (microCT) as a substantive adjunct to traditional morphological examination. We present 3D models of the holotype and paratype specimens and discuss the potential of this non-destructive technique in documenting new species of millipedes and other organisms. The microCT data have been uploaded to an open repository (Dryad) to serve as the first actual millipede cybertypes to be published.
We demonstrate how a classical taxonomic description of a new species can be enhanced by applying new generation molecular methods, and novel computing and imaging technologies. A cave-dwelling centipede, Eupolybothrus cavernicolus Komerički & Stoev sp. n. (Chilopoda: Lithobiomorpha: Lithobiidae), found in a remote karst region in Knin, Croatia, is the first eukaryotic species for which, in addition to the traditional morphological description, we provide a fully sequenced transcriptome, a DNA barcode, detailed anatomical X-ray microtomography (micro-CT) scans, and a movie of the living specimen to document important traits of its ex-situ behaviour. By employing micro-CT scanning in a new species for the first time, we create a high-resolution morphological and anatomical dataset that allows virtual reconstructions of the specimen and subsequent interactive manipulation to test the recently introduced ‘cybertype’ notion. In addition, the transcriptome was recorded with a total of 67,785 scaffolds, having an average length of 812 bp and N50 of 1,448 bp (see GigaDB). Subsequent annotation of 22,866 scaffolds was conducted by tracing homologs against current available databases, including Nr, SwissProt and COG. This pilot project illustrates a workflow of producing, storing, publishing and disseminating large data sets associated with a description of a new taxon. All data have been deposited in publicly accessible repositories, such as GigaScience GigaDB, NCBI, BOLD, Morphbank and Morphosource, and the respective open licenses used ensure their accessibility and re-usability.
The centipede genus Eupolybothrus Verhoeff, 1907 in North Africa is revised. A new cavernicolous species, Eupolybothrus kahfi Stoev & Akkari, sp. n., is described from a cave in Jebel Zaghouan, northeast Tunisia. Morphologically, it is most closely related to Eupolybothrus nudicornis (Gervais, 1837) from North Africa and Southwest Europe but can be readily distinguished by the long antennae and leg-pair 15, a conical dorso-median protuberance emerging from the posterior part of prefemur 15, and the shape of the male first genital sternite. Molecular sequence data from the cytochrome c oxidase I gene (mtDNA–5’ COI-barcoding fragment) exhibit 19.19% divergence between Eupolybothrus kahfi and Eupolybothrus nudicornis, an interspecific value comparable to those observed among four other species of Eupolybothrus which, combined with a low intraspecific divergence (0.3–1.14%), supports the morphological diagnosis of Eupolybothrus kahfi as a separate species. This is the first troglomorphic myriapod to be found in Tunisia, and the second troglomorph lithobiomorph centipede known from North Africa. Eupolybothrus nudicornis is redescribed based on abundant material from Tunisia and its post-embryonic development, distribution and habitat preferences recorded. Eupolybothrus cloudsley-thompsoni Turk, 1955, a nominal species based on Tunisian type material, is placed in synonymy with Eupolybothrus nudicornis. To comply with the latest technological developments in publishing of biological information, the paper implements new approaches in cybertaxonomy, such as fine granularity XML tagging validated against the NLM DTD TaxPub for PubMedCentral and dissemination in XML to various aggregators (GBIF, EOL, Wikipedia), vizualisation of all taxa mentioned in the text via the dynamically created Pensoft Taxon Profile (PTP) page, data publishing, georeferencing of all localities via Google Earth, and ZooBank, GenBank and MorphBank registration of datasets. An interactive key to all valid species of Eupolybothrus is made with DELTA software.
Alien myriapods in Europe have never been subject to a comprehensive review. Currently, 40 species belonging to 23 families and 11 orders can be regarded as alien to Europe, which accounts approximately for about 1.8% of all species known on the continent. Millipedes (Class Diplopoda) are represented by 20 alien species, followed by centipedes (Class Chilopoda) with 16, symphylans with 3 and pauropods with only 1. In addition there are numerous cases of continental species introduced to the Atlantic and Mediterranean islands or others of southern origin transported and established in North European cities. Th e earliest record of an alien myriapod dates back to 1836, although the introduction of some species into Europe could have begun already in historical times with an increase in trade between ancient Greeks and Romans with cities in the Near East and North Africa. In post-medieval times this process should have intensifi ed with the trade between Europe and some tropical countries, especially after the discoveries of the Americas and Australia. Th e largest number of alien myriapods (25, excl. intercepted) has been recorded from Great Britain, followed by Germany with 12, France with 11 and Denmark with 10 species. In general, northern and economically more developed countries with high levels of imports and numerous busy sea ports are richer in alien species. Th e various alien myriapods have diff erent origins, but most of them show tropical or subtropical links (28 species, 70%). Eight of them (20%) are widespread in the Tropical and Subtropical belts, eleven (circa 28%) are of Asian origin, seven show links with South and A peer-reviewed open-access journal Pavel Stoev et al. / BioRisk 4(1): 97-130 (2010) 98 the Indian Ocean. Ten myriapods are of unknown origin (cryptogenic). Only 12 species (ca. 30%) of all have established in the wild in Europe. At the present time alien myriapods do not cause serious threats to the European economy and there is insuffi cient data on their impact on native fauna and fl ora.
The mandibles and the first maxillae of 37 species of the family Lithobiidae (Myriapoda, Chilopoda) were investigated and compared to provide a structural overview and evaluate their significance for the systematics of the family. The species sampling focused on the genus Lithobius, examining 33 species of four subgenera (Lithobius, Monotarsobius, Sigibius, Ezembius), as this genus represents about half of the known diversity of Lithobiidae, including more than 500 assigned species and subspecies. The microstructures on the mandibular gnathal edge and the first maxillary telopodites and coxal projections were studied using scanning electron microscopy. Although having a similar structural pattern, we demonstrate that the microstructures are variable within and between species of adult specimens and commonly show intergradation. To check for intraspecific variability of microstructures and character stability, specimen sampling was extended for the two common Austrian species Lithobius dentatus and Lithobius validus, for which seven specimens depicted no major differences in the mandibular gnathal edge and the first maxillae. Our data suggest the presence of three characters in the mandibular gnathal edge and the first maxillae useful for lithobiid phylogeny. These characters were tested in a phylogenetic analysis together with previously described and novel morphological characters. Subgenera of Lithobius are mostly non‐monophyletic, and several other genera of Lithobiinae as well as other subfamilies group with particular species or clades of Lithobius. The results corroborate a close relationship between Disphaerobius loricatus and Lithobius (Ezembius) giganteus, strengthening the hypothesis that Pterygoterginae is nested within Lithobiinae and specifically within Lithobius, allied to L. (Ezembius) and Hessebius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.