The treatment of textile wastewater (TWW) loaded with recalcitrant azo dyes in bioelectrochemical systems (BES) rather than in physicochemical processes is a low-cost and environmentally friendly process. The main objective of this study is to investigate the potential of different saline sediments collected from extreme Tunisian environments for the formation of bioanodes capable ofsimultaneous azo dyes degradation and electric current generation in synthetic (STWW) and real textile wastewaters (RTWW) characterized by a varied composition of azo dyes and a high salinity. The obtained bioanodes and anolytes were studied comparatively by electrochemical, microscopic, analytical, and molecular tools.Based on the UV–visible spectra analysis, the breakdown of the azo bond was confirmed. With RTWW, the BES achieved a chemical oxygen demand (COD) abatement rate of 85%with a current density of 2.5 A/m2. Microbial community analysis indicated that a diverse community of bacteria was active for effluent treatment coupled with energy production. At the phylum level, the electrodes were primarily colonized by proteobacteria and firmicutes, which are the two phyla most involved in bioremediation. The analysis of the microbial community also showed the abundance of Marinobacter hydrocarbonoclasticus and Marinobacter sp. species characterized by their high metabolic capacity, tolerance to extremophilic conditions, and role in hydrocarbon degradation.
This study investigated for the first time the performance of microbial halotolerant bioanodes designed from two Tunisian Hypersaline Sediments (THS) for simultaneous electrostimulated biodegradation of synthetic fruit packaging wastewater containing thiabendazole (TBZ), and recovery of an anodic current signal. Halotolerant bioanodes formation has been conducted on 6 cm2 carbon felt electrodes polarized at −0.1Vvs Saturated Calomel Electrode (SCE), inoculated with 80% (v:v) of synthetic wastewater containing 50 ppm of irradiated or not irradiated TBZ and 20% (v:v) of THS for a period of 7 days. Microbial bioanodes, and the corresponding anolytes, i.e., synthetic wastewater, were studied comparatively by electrochemical, microscopic, spectroscopic, molecular and microbial ecology tools. Despite the low maximum current densities recorded in the 50 ppm TBZ runs (3.66 mA/m2), more than 80% of the TBZ was degraded when non-irradiated TBZ (nTBZ) was used as the sole carbon energy by the microorganisms. Nevertheless, the degradation in the presence of irradiated TBZ (iTBZ) was greatly reduced by increasing the irradiation dose with maximum current density of 0.95 mA/m2 and a degradation rate less than 50% of iTBZ. In addition, chemical changes were observed in TBZ as a result of gamma irradiation and bioelectrochemical degradation. FT-IR and UV-Vis techniques confirmed the degradation of TBZ structural bonds producing novel functional groups. Culture-dependent approach and 16S ribosomal RNA sequencing demonstrated that bacterial community of halotolerant bioanodes formed with nTBZ were dominated by Proteobacteria (75%) and Firmicutes (25%). At species level, enrichment of Halomonas smyrnensis, Halomonas halophila, Halomonas salina, Halomonasor ganivorans and Halomonas koreensis on carbon felt electrodes were correlated with maximal current production and nTBZ degradation. As a result, THS halotolerant bacteria, and specifically those from Chott El Djerid (CJ) site certainly have well established application for the electrostimulated microbial biodegradation of fungicide in the real fruit and vegetable processing industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.