Strain 68-1 rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens elicit CD8+ T cells recognizing epitopes presented by major histocompatibility complex (MHC)-II and MHC-E, not MHC-Ia. These immune responses mediate replication arrest of SIV in 50 to 60% of monkeys. We show that the peptide VMAPRTLLL (VL9) embedded within the RhCMV protein Rh67 promotes intracellular MHC-E transport and recognition of RhCMV-infected fibroblasts by MHC-E-restricted CD8+ T cells. Deletion or mutation of viral VL9 abrogated MHC-E-restricted CD8+ T cell priming, resulting in CD8+ T cell responses exclusively targeting MHC-II-restricted epitopes. These responses were comparable in magnitude and differentiation to responses elicited by 68-1 vectors, but did not protect against SIV. Thus, Rh67-enabled direct priming of MHC-E-restricted T cells is crucial for RhCMV/SIV vaccine efficacy.
Strain 68-1 rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens elicit CD8+ T cells that recognize peptide epitopes presented by major histocompatibility complex (MHC)-II and MHC-E molecules, instead of MHC-Ia, and are uniquely able to mediate stringent control and subsequent clearance of highly pathogenic SIV in ~50% of vaccinated rhesus macaques (RMs). We show that the MHC-E ligand VMAPRTLLL (VL9), encoded by the Rh67 gene (or its HCMV UL40 counterpart) is required for recognition of RhCMV-infected fibroblasts by MHC-E-restricted CD8+ T cells via its ability to promote intracellular MHC-E transport. Moreover, deletion of Rh67 from 68-1 RhCMV/SIV vectors, or mutation of its embedded VL9 ligand, abrogated induction of MHC-E-restricted CD8+ T cell responses, leaving responses that exclusively target MHC-II-restricted epitopes. These MHC-II-presented CD8+ T cell responses, though comparable in response magnitude and functional differentiation to responses arising from the efficacious 68-1 vector, did not protect RMs against SIV challenge, indicating that Rh67/UL40-enabled direct priming of MHC-E-targeted CD8+ T cells is a crucial element of RhCMV/SIV vaccine efficacy.
Anti-VLA-2 antibodies protected HeLa cells from infection by echoviruses 1 and 8 but not from infection by other echovirus serotypes. Echoviruses 1 and 8 bound to and infected nonpermissive hamster cells transfected with the (x2 subunit of human VLA-2. These results indicate that the human o2 subunit is critical for infection by echoviruses 1 and 8 but that other echovirus serotypes must bind receptors other than VLA-2. Echoviruses, nonenveloped RNA viruses belonging to the picornavirus family, are a common cause of human disease, including febrile illness, rash, and aseptic meningitis (5). Neutralizing antisera to echovirus isolates have been used to distinguish at least 30 viral serotypes (15). A variety of evidence demonstrates that the cell surface receptor for echovirus serotype 1 is the integrin VLA-2, an adhesion receptor mediating cell interactions with collagen and laminin. Monoclonal antibodies (MAbs) that protect susceptible cells from infection and prevent cell surface attachment of radiolabeled echovirus recognize the cx2 and P1
Human cytomegalovirus (HCMV) depends on and modulates multiple host cell membrane proteins during each stage of the viral life cycle. To gain a global view of the impact of HCMV-infection on membrane proteins, we analyzed HCMV-induced changes in the abundance of membrane proteins in fibroblasts using stable isotope labeling with amino acids (SILAC), membrane fractionation and protein identification by two-dimensional liquid chromatography and tandem mass spectrometry. This systematic approach revealed that CD81, CD44, CD98, caveolin-1 and catenin delta-1 were down-regulated during infection whereas GRP-78 was up-regulated. Since CD81 downregulation was also observed during infection with UV-inactivated virus we hypothesized that this tetraspanin is part of the viral entry process. Interestingly, additional members of the tetraspanin family, CD9 and CD151, were also downregulated during HCMV-entry. Since tetraspanin-enriched microdomains (TEM) cluster host cell membrane proteins including known CMV receptors such as integrins, we studied whether TEMs are required for viral entry. When TEMs were disrupted with the cholesterol chelator methyl-β-cylcodextrin, viral entry was inhibited and this inhibition correlated with reduced surface levels of CD81, CD9 and CD151, whereas integrin levels remained unchanged. Furthermore, simultaneous siRNA-mediated knockdown of multiple tetraspanins inhibited viral entry whereas individual knockdown had little effect suggesting essential, but redundant roles for individual tetraspanins during entry. Taken together, our data suggest that TEM act as platforms for receptors utilized by HCMV for entry into cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.