The updraft plasma gasification process of different municipal solid wastes (MSWs) to produce syngas as a substitute gaseous fuel was assessed from a techno-economic viewpoint. The plasma gasification process was modeled under a thermo-chemical approach using aspen plus. The model validation has been carried out with experimental data from the literature, reaching an average relative error of 6.23% for temperature, heating values, and fuel species concentration of the syngas. The plasma torch power consumption was one of the main process parameters that affects the energy and exergy efficiencies. In spite of increasing moisture content of MSW, from 26.61% to 57.9%, the energy and exergy efficiencies expanded by 1.5% and 5.4% on average, respectively, which ascribed to the reduction of torch power consumption; this behavior resulted as the torches thermally degraded a lower fraction of dry MSW. Whereas, if plasma temperature increased (2500 °C to 4000 °C), the gasification efficiencies diminished because of the torch power consumption boosted by 28.3%. Furthermore, the parameter combinations process (air flow and plasma temperature) was found to reach the highest process efficiency, the efficiency ranged from 79.22% to 83.46%, highlighting the plasma gasification flexibility. The levelized cost of syngas production varied from 15.83 to 26.21 ¢US$/kW h. Therefore, to make these projects feasible (waste to energy), a waste disposal charge ranging between 14.67 and 26.82 ¢US$/kW h was proposed.
ResumenSe determinan estrategias termodinámicas para la conversión energética de Residuos Sólidos Urbanos (RSU) en plantas de incineración bajo condiciones sub-estequiométricas. La valoración energética de RSU es una alternativa para mitigar los impactos ambientales que genera su disposición final, siendo la producción de RSU de la ciudad de Medellín (Colombia) de aproximadamente 1800 ton/día. El análisis se lleva a cabo mediante un modelo en equilibrio termoquímico del proceso de gasificación, donde se estudia el efecto del contenido de humedad y la relación equivalente combustible-aire en el proceso termoquímico. El potencial energético de los RSU de la ciudad es de 28 a 44 MW eléctricos. Las estrategias termodinámicas para aprovechar energéticamente los RSU en plantas de incineración bajo condiciones sub-estequiométricas, de modo autotérmico y evitando la fusión de cenizas, establecen que el proceso se debe llevar a cabo con una relación equivalente combustible-aire de gasificación entre 1.5 y 3.3, independiente del contenido de humedad de los RSU.
Palabras clave: valoración energética; residuos sólidos urbanos; equilibrio termoquímico; gasificación
AbstractIn this study, thermodynamic strategies are determined for the energy conversion of Municipal Solid Wastes (MSW) in incineration plants under sub-stoichiometric conditions. Energy generation from MSW is an alternative to mitigate the environmental impacts derived by their final disposal, being the production rate of MSW in Medellin city (Colombia) of about 1800 ton/day. The analysis is conducted by means of a thermochemical equilibrium model of the gasification process, where the effect of moisture content and fuelair equivalence ratio on the thermochemical process is studied. The energy potential of MSW from the city is between 28 and 44 MWe. The thermodynamic strategies for energy recovery from MSW in incineration plants at sub-stoichiometric conditions, under auto-thermal regimens and avoiding ash fusion, establish that the process must be carried out with a fuel-air equivalence ratio between 1.5 and 3.3, regardless of the moisture content of the MSW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.