The goal of this paper is the study of simple rank 2 parabolic vector bundles over a 2-punctured elliptic curve C. We show that the moduli space of these bundles is a non-separated gluing of two charts isomorphic to P 1 × P 1 . We also showcase a special curve Γ isomorphic to C embedded in this space, and this way we prove a Torelli theorem. This moduli space is related to the moduli space of semistable parabolic bundles over P 1 via a modular map which turns out to be the 2:1 cover ramified in Γ. We recover the geometry of del Pezzo surfaces of degree 4 and we reconstruct all their automorphisms via elementary transformations of parabolic vector bundles.
IRMAR, Univ. Rennes
Let C be a hyperelliptic curve of genus
$g \geq 3$
. In this paper, we give a new geometric description of the theta map for moduli spaces of rank 2 semistable vector bundles on C with trivial determinant. In order to do this, we describe a fibration of (a birational model of) the moduli space, whose fibers are GIT quotients
$(\mathbb {P}^1)^{2g}//\text {PGL(2)}$
. Then, we identify the restriction of the theta map to these GIT quotients with some explicit degree 2 osculating projection. As a corollary of this construction, we obtain a birational inclusion of a fibration in Kummer
$(g-1)$
-varieties over
$\mathbb {P}^g$
inside the ramification locus of the theta map.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.