We describe high-efficiency (peak capacities of approximately 10(3)) nanoscale (using column inner diameters down to 15 microm) liquid chromatography (nanoLC)/low flow rate electrospray (nanoESI) mass spectrometry (MS) for the sensitive analysis of complex global cellular protein enzymatic digests (i.e., proteomics). Using a liquid slurry packing method with carefully selected packing solvents, 87-cm-length capillaries having inner diameters of 14.9-74.5 microm were successfully packed with 3-microm C18-bonded porous (300-A pores) silica particles at a pressure of 18,000 psi. With a mobile-phase delivery pressure of 10,000 psi, these packed capillaries provided mobile-phase flow rates as low as approximately 20 nL/min at LC linear velocities of approximately 0.2 cm/s, which is near optimal for separation efficiency. To maintain chromatographic efficiency, unions with internal channel diameters as small as 10 microm were specially produced for connecting packed capillaries to replaceable nanoESI emitters having orifice diameters of 2-10 microm (depending on the packed capillary dimensions). Coupled on-line with a hybrid-quadrupole time-of-flight MS through the nanoESI interface, the nanoLC separations provided peak capacities of approximately 10(3) for proteome proteolytic polypeptide mixtures when a positive feedback switching valve was used for quantitatively introducing samples. Over a relatively large range of sample loadings (e.g., 5-100 ng, and 50-500 ng of cellular proteolytic peptides for 14.9- and 29.7-microm-i.d. packed capillaries, respectively), the nanoLC/nanoESI MS response for low-abundance components of the complex mixtures was found to increase linearly with sample loading. The nanoLC/nanoESI-MS sensitivity also increased linearly with decreasing flow rate (or approximately inversely proportional to the square of the capillary inner diameter) in the flow range of 20-400 nL/min. Thus, except at the lower loadings, decreasing the separation capillary inner diameter has an effect equivalent to increasing sample loading, which is important for sample-limited proteomic applications. No significant effects on recovery of eluting polypeptides were observed using porous C18 particles with surface pores of 300-A versus nonporous particles. Tandem MS analyses were also demonstrated using the high-efficiency nanoLC separations. Chromatographic elution time, MS response intensity, and mass measurement accuracy was examined between runs with a single column (with a single nanoESI emitter), between different columns (same and different inner diameters with different nanoESI emitters), and for different samples (various concentrations of cellular proteolytic peptides) and demonstrated robust and reproducible sensitive analyses for complex proteomic samples.
The purpose of this study was to estimate the prevalence of erectile dysfunction (ED) in Colombia, Ecuador, and Venezuela. A 49-item questionnaire was completed by 1946 men aged 40 years and older. The age-adjusted combined prevalence of minimal, moderate, and complete ED for all three countries was 53.4%, with 19.8% of all men reporting moderate to complete ED. Age was the variable most strongly linked to ED; the prevalence of complete ED increased markedly in men older than 79 y of age (31.9%) and 70 -79 y (17.2%) compared with men aged 40 -49 y (<3%). Several medical conditions, such as hypertension, benign prostatic hyperplasia, and diabetes, and the use of medications to treat these conditions were correlated with the prevalence of ED. This study corroborates earlier studies demonstrating that ED is very common, increases dramatically with age, and has multiple correlates, including some that are also risk factors for cardiovascular disease.
A new mode of operation of a time-of-flight mass spectrometer (TOFMS) is described and demonstrated. A continuous ion beam emerging from the ion source is accelerated and then modulated by a pseudorandom sequence of "on" and "off" pulses. The data acquisition period is set to match the period of the modulation sequence, and data are acquired synchronously with the modulation of the ion beam. The modulation sequence is deconvoluted from the data using a fast Hadamard transform (FHT) algorithm to extract the time-of-flight distribution of the ions. This multiplexing scheme increases the ion usage to ∼50% for a single detector instrument and ∼100% for a multiple detector instrument, which improves the signal level considerably over that of conventional TOFMS. The gains in signal lead to an improved signal-to-noise ratio or alternatively reduced data acquisition time, giving HT-TOFMS a major instrumental advantage over conventional TOFMS in a number of applications at little additional cost. Positive mode electrospray ionization mass spectra of tetrabutylammonium perchlorate, cesium chloride, and a protein mixture of cytochrome c and ubiquitin are presented to illustrate the method and the device.
We evaluated the hypothesis that coordinated adjustments in absolute rates of gluconeogenesis (GNG(ab)) and hepatic glycogenolysis (Gly) would maintain euglycemia and match glucose production (GP) to peripheral utilization during rest and exercise. Specifically, we evaluated the extent to which gradations in exercise power output would affect the contribution of GNG(ab) to GP. For these purposes, we employed mass isotopomer distribution analysis (MIDA) and isotope-dilution techniques on eight postabsorptive (PA) endurance-trained men during 90 min of leg cycle ergometry at 45 and 65% peak O(2) consumption (VO(2 peak); moderate and hard intensities, respectively) and the preceding rest period. GP was constant in resting subjects, whereas the fraction from GNG (f(GNG)) increased over time during rest (22.3 +/- 0.9% at 11.25 h PA vs. 25.6 +/- 0.9% at 12.0 h PA, P < 0.05). In the transition from rest to exercise, GP increased in an intensity-dependent manner (rest, 2.0 +/- 0.1; 45%, 4.0 +/- 0.4; 65%, 5.84 +/- 0.64 mg. kg(-1). min(-1), P < 0.05), although glucose rate of disappearance exceeded rate of appearance during the last 30 min of exercise at 65% VO(2 peak). Compared with rest, increases in GP were sustained by 92 and 135% increments in GNG(ab) during moderate- and hard-intensity exercises, respectively. Correspondingly, Gly (calculated as the difference between GP and MIDA-measured GNG(ab)) increased 100 and 203% over rest during the two exercise intensities. During moderate-intensity exercise, f(GNG) was the same as at rest; however, during the harder exercise f(GNG) decreased significantly to account for only 21% of GP. The highest sustained GNG(ab) observed in these trials on PA men was 1.24 +/- 0.3 mg. kg(-1). min(-1). We conclude that, after an overnight fast, 1) absolute GNG rates increased with intensity of effort despite a reduced f(GNG) at 65% VO(2 peak), 2) during exercise Gly is more responsible than GNG(ab) for maintaining GP, and 3) in 12-h fasted men, neither increased Gly or GNG(ab) nor was their combination able to maintain euglycemia during prolonged hard (65% VO(2 peak)) exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.