The CA125 antigen is found in the serum of many patients with serous ovarian cancer and has been widely used as a disease marker. CA125 has been shown to be an independent factor for clinical outcome in this disease. In The Cancer Genome Atlas ovarian cancer project, MUC16 expression levels are frequently increased, and the highest levels of MUC16 expression are linked to a significantly worse survival. To examine the biologic effect of the proximal portion of MUC16/CA125, NIH/3T3 (3T3) fibroblast cell lines were stably transfected with the carboxy elements of MUC16. As few as 114 amino acids from the carboxy-terminal portion of MUC16 were sufficient to increase soft agar growth, promote matrigel invasion, and increase the rate of tumor growth in athymic nude mice. Transformation with carboxy elements of MUC16 was associated with activation of the AKT and ERK pathways. MUC16 transformation was associated with up-regulation of a number of metastases and invasion gene transcripts, including IL-1β, MMP2, and MMP9. All observed oncogenic changes were exclusively dependent on the extracellular “ectodomain” of MUC16. The biologic impact of MUC16 was also explored through the creation of a transgenic mouse model expressing 354 amino acids of the carboxy-terminal portion of MUC16 (MUC16c354). Under a CMV, early enhancer plus chicken β actin promoter (CAG) MUC16c354 was well expressed in many organs, including the brain, colon, heart, kidney, liver, lung, ovary, and spleen. MUC16c354 transgenic animals appear to be viable, fertile, and have a normal lifespan. However, when crossed with p53-deficient mice, the MUC16c354:p53+/- progeny displayed a higher frequency of spontaneous tumor development compared to p53+/- mice alone. We conclude that the carboxy-terminal portion of the MUC16/CA125 protein is oncogenic in NIH/3T3 cells, increases invasive tumor properties, activates the AKT and ERK pathways, and contributes to the biologic properties of ovarian cancer.
Expression of the retained C-terminal extracellular portion of the ovarian cancer glycoprotein MUC16 induces transformation and tumor growth. However, the mechanisms of MUC16 oncogenesis related to glycosylation are not clearly defined. We establish that MUC16 oncogenic effects are mediated through MGAT5-dependent N-glycosylation of two specific asparagine sites within its 58 amino acid ectodomain. Oncogenic signaling from the C-terminal portion of MUC16 requires the presence of Galectin-3 and growth factor receptors co-localized on lipid rafts. These effects are blocked upon loss of either Galectin-3 expression or activity MGAT5. Using synthetic MUC16 glycopeptides, we developed novel N-glycosylation site directed–monoclonal antibodies that block Galectin-3–mediated MUC16 interactions with cell surface signaling molecules. These antibodies inhibit invasion of ovarian cancer cells, directly blocking the in vivo growth of MUC16-bearing ovarian cancer xenografts, elucidating new therapeutic modalities.
Desmoplastic small round cell tumor (DSRCT) is characterized by the EWSR1–WT1 t(11;22) (p13:q12) translocation. Few additional putative drivers have been identified, and research has suffered from a lack of model systems. Next-generation sequencing (NGS) data from 68 matched tumor-normal samples, whole-genome sequencing data from 10 samples, transcriptomic and affymetrix array data, and a bank of DSRCT patient-derived xenograft (PDX) are presented. EWSR1–WT1 fusions were noted to be simple, balanced events. Recurrent mutations were uncommon, but were noted in TERT (3%), ARID1A (6%), HRAS (5%), and TP53 (3%), and recurrent loss of heterozygosity (LOH) at 11p, 11q, and 16q was identified in 18%, 22%, and 34% of samples, respectively. Comparison of tumor-normal matched versus unmatched analysis suggests overcalling of somatic mutations in prior publications of DSRCT NGS data. Alterations in fibroblast growth factor receptor 4 (FGFR4) were identified in 5 of 68 (7%) of tumor samples, whereas differential overexpression of FGFR4 was confirmed orthogonally using 2 platforms. PDX models harbored the pathognomic EWSR1–WT1 fusion and were highly representative of corresponding tumors. Our analyses confirm DSRCT as a genomically quiet cancer defined by the balanced translocation, t(11;22)(p13:q12), characterized by a paucity of secondary mutations but a significant number of copy number alterations. Against this genomically quiet background, recurrent activating alterations of FGFR4 stood out, and suggest that this receptor tyrosine kinase, also noted to be highly expressed in DSRCT, should be further investigated. Future studies of DSRCT biology and preclinical therapeutic strategies should benefit from the PDX models characterized in this study. Implications: These data describe the general quiescence of the desmoplastic small round cell tumor (DSRCT) genome, present the first available bank of DSRCT model systems, and nominate FGFR4 as a key receptor tyrosine kinase in DSRCT, based on high expression, recurrent amplification, and recurrent activating mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.