p53 is a potent tumor suppressor, whose biological effects are largely due to its function as a transcriptional regulator. Here we report that, in addition to regulating the expression of hundreds of protein-coding genes, p53 also modulates the levels of microRNAs (miRNAs). Specifically, p53 can induce expression of microRNA-34a (miR-34a) in cultured cells as well as in irradiated mice, by binding to a perfect p53 binding site located within the gene that gives rise to miR-34a. Processing of the primary transcript into mature miR-34a involves the excision of a 30 kb intron. Notably, inactivation of miR-34a strongly attenuates p53-mediated apoptosis in cells exposed to genotoxic stress, whereas overexpression of miR-34a mildly increases apoptosis. Hence, miR-34a is a direct proapoptotic transcriptional target of p53 that can mediate some of p53's biological effects. Perturbation of miR-34a expression, as occurs in some human cancers, may thus contribute to tumorigenesis by attenuating p53-dependent apoptosis.
Histone monoubiquitylation is implicated in critical regulatory processes. We explored the roles of histone H2B ubiquitylation in human cells by reducing the expression of hBRE1/RNF20, the major H2B-specific E3 ubiquitin ligase. While H2B ubiquitylation is broadly associated with transcribed genes, only a subset of genes was transcriptionally affected by RNF20 depletion and abrogation of H2B ubiquitylation. Gene expression dependent on RNF20 includes histones H2A and H2B and the p53 tumor suppressor. In contrast, RNF20 suppresses the expression of several proto-oncogenes, which reside preferentially in closed chromatin and are modestly transcribed despite bearing marks usually associated with high transcription rates. Remarkably, RNF20 depletion augmented the transcriptional effects of epidermal growth factor (EGF), increased cell migration, and elicited transformation and tumorigenesis. Furthermore, frequent RNF20 promoter hypermethylation was observed in tumors. RNF20 may thus be a putative tumor suppressor, acting through selective regulation of a distinct subset of genes.[Keywords: RNF20; BRE1; H2B ubiquitylation; tumor suppressor; transcription] Supplemental material is available at http://www.genesdev.org. Received June 6, 2008; revised version accepted August 12, 2008. Eukaryotic DNA is packaged into a chromatin structure of repeating nucleosomes consisting of DNA wrapped around an octamer of core histone proteins (H2A, H2B, H3, and H4). The histone tails, which protrude from the nucleosome, are subjected to a multitude of covalent modifications believed to play a vital role in chromatin remodeling and transcriptional regulation (Jenuwein and Allis 2001;Berger 2007;. One such modification is histone H2B monoubiquitylation. In the yeast S. cerevisiae this process is mediated by the E3 ligase BRE1 (Hwang et al. 2003). In mammals, the hBRE1(RNF20)/RNF40 complex was shown to function as the relevant E3 ligase (Kim et al. 2005;Zhu et al. 2005). In yeast, transcription of several inducible genes is impaired in the absence of ubiquitylated H2B (H2Bub) (Kao et al. 2004). Increased levels of H2Bub occur on the GAL1 core promoter and throughout the transcribed region upon transcriptional activation, with both ubiquitylation and deubiquitylation being required for optimal transcription (Henry et al. 2003;Xiao et al. 2005). Moreover, H2B monoubiquitylation was shown to lead to H3 methylation on Lys 4 and Lys 79, considered marks of actively transcribed genes (Briggs et al. 2002;Sun and Allis 2002). Yet, a recent study suggests that H2B ubiquitylation in S. pombe controls transcriptional elongation by RNA polymerase II (Pol II) independently of H3 methylation (Tanny et al. 2007).Along with the studies linking H2Bub positively with active transcription, other reports suggest a link between
Key Points Question Do patients with cancer develop adequate antibody responses to messenger RNA SARS-CoV-2 vaccines? Findings In this cohort study that included 102 patients with cancer who were receiving active treatment and 78 healthy controls, 92 patients with cancer (90%) and 100% of the controls were seropositive after the second messenger RNA BNT162b2 vaccine dose.. Meaning The findings of this study suggest that patients with cancer who are receiving active treatment and are at higher risk for severe COVID-19 disease respond well to messenger RNA SARS-CoV-2 vaccines and that vaccination of these patients should be seriously considered.
The p53 tumor suppressor acts as a major barrier against cancer. To a large extent, this is due to its ability to maintain genome stability and to eliminate cancer cells from the replicative pool through cell-autonomous mechanisms. However, in addition to its well-documented functions within the malignant cancer cell, p53 can also exert non-cell-autonomous effects that contribute to tumor suppression. We now report that p53 can suppress the production of the chemokine SDF-1 in cultured fibroblasts of both human and mouse origin. This is due to a p53-mediated down-regulation of SDF-1 mRNA, which can be exacerbated on activation of p53 by the drug Nutlin-3. SDF-1 promotes the migration and invasiveness of cells that express its cognate receptor CXCR4. Indeed, medium conditioned by p53-deficient fibroblasts induces cancer cells towards increased directional migration and invasiveness, which are largely reversed by CXCR4 antagonist peptides. Because SDF-1 produced by stromal fibroblasts plays an important role in cancer progression and metastasis, our findings suggest that the ability of p53 to suppress stromal SDF-1 production may be an important mechanism whereby it does its non-cell-autonomous tumor suppressor function.
The p53 tumor suppressor exerts a variety of cell-autonomous effects that are aimed to thwart tumor development. In addition, however, there is growing evidence for cell nonautonomous tumor suppressor effects of p53. In the present study, we investigated the impact of stromal p53 on tumor growth. Specifically, we found that ablation of p53 in fibroblasts enabled them to promote more efficiently the growth of tumors initiated by PC3 prostate cancer-derived cells. This stimulatory effect was dependent on the increased expression of the chemokine SDF-1 in the p53-deficient fibroblasts. Notably, fibroblasts harboring mutant p53 protein were more effective than p53-null fibroblasts in promoting tumor growth. The presence of either p53-null or p53-mutant fibroblasts led also to a markedly elevated rate of metastatic spread of the PC3 tumors. These findings implicate p53 in a cell nonautonomous tumor suppressor role within stromal fibroblasts, through suppressing the production of tumor stimulatory factors by these cells. Moreover, expression of mutant p53 by tumor stroma fibroblasts might exert a gain of function effect, further accelerating tumor development. Cancer Res; 70(23); 9650-8.Ó2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.