Several studies have documented the hypolipidemic effect of anthocyanin-rich plants in vitro and in vivo. The objective of this study was to elucidate the inhibitory activity of anthocyanin-rich fraction from Thai berries against fat digestive enzymes. The ability of Thai berries to bind bile acid, disrupt cholesterol micellization and the cholesterol uptake into Caco-2 cells was also determined. The content of total phenolics, flavonoid and anthocyanin in Prunus domestica L. (TPE), Antidesma bunius (L.) Spreng, Syzygium cumini (L.) Skeels, and Syzygium nervosum A. Cunn. Ex DC was 222.7-283.5 mg gallic acid equivalents, 91.2-184.3 mg catechin equivalents, and 37.9-49.5 mg cyanidin-3-glucoside equivalents/g extract, respectively. The anthocyanin-rich fraction of all extracts inhibited pancreatic lipase and cholesterol esterase with the IC 50 values of 90.6-181.7 μg/mL and 288.7-455.0 μg/mL, respectively. Additionally, all extracts could bind primary and secondary bile acids (16.4-36.6%) and reduce the solubility of cholesterol in artificial micelles (53.0-67.6%). Interestingly, TPE was the most potent extract on interfering the key steps of lipid digestion among the tested extracts. In addition, TPE (0.10-0.50 mg/mL) significantly reduced the cholesterol uptake into Caco-2 cells in a concentration-dependent manner. These results demonstrate a new insight into the role of anthocyanin-rich Thai berry extract on interfering the key steps of lipid digestion and absorption.
Antidesma bunius (L.) spreng (Mamao) is widely distributed in Northeastern Thailand. Antidesma bunius has been reported to contain anthocyanins, which possess antioxidant and antihypertensive actions. However, the antidiabetic and antiglycation activity of Antidesma bunius fruit extract has not yet been reported. In this study, we investigated the inhibitory activity of anthocyanin-enriched fraction of Antidesma bunius fruit extract (ABE) against pancreatic α-amylase, intestinal α-glucosidase (maltase and sucrase), protein glycation, as well as antioxidant activity. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) chromatogram revealed that ABE contained phytochemical compounds such as cyanidin-3-glucoside, delphinidin-3-glucoside, ellagic acid, and myricetin-3-galactoside. ABE inhibited intestinal maltase and sucrase activity with the IC50 values of 0.76 ± 0.02 mg/mL and 1.33 ± 0.03 mg/mL, respectively. Furthermore, ABE (0.25 mg/mL) reduced the formation of fluorescent AGEs and the level of Nε-carboxymethyllysine (Nε-CML) in fructose and glucose-induced protein glycation during four weeks of incubation. During the glycation process, the protein carbonyl and β-amyloid cross structure were decreased by ABE (0.25 mg/mL). In addition, ABE exhibited antioxidant activity through DPPH radical scavenging activity and Trolox equivalent antioxidant capacity (TEAC) with the IC50 values 15.84 ± 0.06 µg/mL and 166.1 ± 2.40 µg/mL, respectively. Meanwhile, ferric reducing antioxidant power (FRAP) showed an EC50 value of 182.22 ± 0.64 µg/mL. The findings suggest that ABE may be a promising agent for inhibiting carbohydrate digestive enzyme activity, reducing monosaccharide-induced protein glycation, and antioxidant activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.