Many biogenic minerals are composed of aggregated particles at the nanoscale. These minerals usually form through the transformation of amorphous precursors into single crystals inside a privileged space controlled by the organism. Here, in vitro experiments aimed at understanding the factors responsible for producing such single crystals with aggregated particle texture are presented. Crystallization is achieved by a two‐step reaction in which amorphous calcium carbonate (ACC) is first precipitated and then transformed into calcite in small volumes of water and in the presence of additives. The additives used are gel‐forming molecules, phosphate ions, and the organic extract from sea urchin embryonic spicules ‐ all are present in various biogenic crystals that grow via the transformation of ACC. Remarkably, this procedure yields faceted single‐crystals of calcite that maintain the nanoparticle texture. The crystals grow predominantly by the accretion of ACC nanoparticles, which subsequently crystallize. Gels and phosphate ions stabilize ACC via a different mechanism than sea urchin spicule macromolecules. It is concluded that the unique nanoparticle texture of biogenic minerals results from formation pathways that may differ from one another, but given the appropriate precursor and micro‐environment, share a common particle accretion mechanism.
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. We reconstructed various stages of the formation pathway of calcium carbonate from calcium ions in sea water to mineral deposition and integration into the forming spicules. Monitoring calcium uptake with the fluorescent dye calcein shows that calcium ions first penetrate the embryo and later are deposited intracellularly. Surprisingly, calcium carbonate deposits are distributed widely all over the embryo, including in the primary mesenchyme cells and in the surface epithelial cells. Using cryo-SEM, we show that the intracellular calcium carbonate deposits are contained in vesicles of diameter 0.5-1.5 μm. Using the newly developed airSEM, which allows direct correlation between fluorescence and energy dispersive spectroscopy, we confirmed the presence of solid calcium carbonate in the vesicles. This mineral phase appears as aggregates of 20-30-nm nanospheres, consistent with amorphous calcium carbonate. The aggregates finally are introduced into the spicule compartment, where they integrate into the growing spicule.biomineralization | mineralization pathway | sea urchin embryonic spicule | transient precursor mineral phase | intracellular mineral deposition
We investigated the manner in which the sea urchin larva takes up calcium from its body cavity into the primary mesenchymal cells (PMCs) that are responsible for spicule formation. We used the membrane-impermeable fluorescent dye calcein and alexa-dextran, with or without a calcium channel inhibitor, and imaged the larvae in vivo with selective-plane illumination microscopy. Both fluorescent molecules are taken up from the body cavity into the PMCs and ectoderm cells, where the two labels are predominantly colocalized in particles, whereas the calcium-binding calcein label is mainly excluded from the endoderm and is concentrated in the spicules. The presence of vesicles and vacuoles inside the PMCs that have openings through the plasma membrane directly to the body cavity was documented using high-resolution cryo-focused ion beam-SEM serial imaging. Some of the vesicles and vacuoles are interconnected to form large networks. We suggest that these vacuolar networks are involved in direct sea water uptake. We conclude that the calcium pathway from the body cavity into cells involves nonspecific endocytosis of sea water with its calcium.
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral–organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate‐based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In‐depth mechanistic understanding of pathological mineralization requires utilizing state‐of‐the‐art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.