Quality assurance guidelines are essential to provide uniform execution of clinical trials and treatment in the application of hyperthermia. This document provides definitions for a good hyperthermia treatment and identifies the clinical conditions where a certain hyperthermia system can or cannot adequately heat the tumour volume. It also provides brief description of the characteristics and performance of the current electromagnetic (radiative and capacitive), ultrasound and infra-red heating techniques. This information helps to select the appropriate heating technique for the specific tumour location and size, and appropriate settings of the water bolus and thermometry. Finally, requirements of staff training and documentation are provided. The guidelines in this document focus on the clinical application and are complemented with a second, more technical quality assurance document providing instructions and procedure to determine essential parameters that describe heating properties of the applicator for superficial hyperthermia. Both sets of guidelines were developed by the ESHO Technical Committee with participation of senior STM members and members of the Atzelsberg Circle.
The benefit of hyperthermia as a potent modifier of radiotherapy has been well established and more recently also the combination with chemotherapy was shown beneficial. Also for head and neck cancer, the impact of hyperthermia has been clinically demonstrated by a number of clinical trials. Unfortunately, the technology applied in these studies provided only limited thermal dose control, and the devices used only allowed treatment of target regions close to the skin. Over the last decade, we developed the technology for deep and controlled hyperthermia that allows treatment of the entire head and neck region. Our strategy involves focused microwave heating combined with 3D patient-specific electromagnetic and thermal simulations for conformal, reproducible and adaptive hyperthermia application. Validation of our strategy has been performed by 3D thermal dose assessment based on invasively placed temperature sensors combined with the 3D patient specific simulations. In this paper, we review the phase III clinical evidence for hyperthermia in head and neck tumors, as well as the heating and dosimetry technology applied in these studies. Next, we describe the development, clinical implementation and validation of 3D guided deep hyperthermia with the HYPERcollar, and its second generation, i.e. the HYPERcollar3D. Lastly, we discuss early clinical results and provide an outlook for this technology.
Clinical outcome of hyperthermia depends on the achieved target temperature, therefore target conformal heating is essential. Currently, invasive temperature probe measurements are the gold standard for temperature monitoring, however, they only provide limited sparse data. In contrast, magnetic resonance thermometry (MRT) provides unique capabilities to non-invasively measure the 3D-temperature. This study investigates MRT accuracy for MR-hyperthermia hybrid systems located at five European institutions while heating a centric or eccentric target in anthropomorphic phantoms with pelvic and spine structures. Scatter plots, root mean square error (RMSE) and Bland–Altman analysis were used to quantify accuracy of MRT compared to high resistance thermistor probe measurements. For all institutions, a linear relation between MRT and thermistor probes measurements was found with R2 (mean ± standard deviation) of 0.97 ± 0.03 and 0.97 ± 0.02, respectively for centric and eccentric heating targets. The RMSE was found to be 0.52 ± 0.31 °C and 0.30 ± 0.20 °C, respectively. The Bland-Altman evaluation showed a mean difference of 0.46 ± 0.20 °C and 0.13 ± 0.08 °C, respectively. This first multi-institutional evaluation of MR-hyperthermia hybrid systems indicates comparable device performance and good agreement between MRT and thermistor probes measurements. This forms the basis to standardize treatments in multi-institution studies of MR-guided hyperthermia and to elucidate thermal dose-effect relations.
Purpose: In this study, we investigated the differences in hyperthermia treatment (HT) quality between treatments applied with different hyperthermia systems for sub-superficial tumours in the head and neck (H&N) region. Materials and methods: In 24 patients, with a clinical target volume (CTV) extending up to 6 cm from the surface, we retrospectively analysed the predicted HT quality achievable by two planar applicator arrays or one phased-array hyperthermia system. Hereto, we calculated and compared the specific absorption rate (SAR) and temperature distribution coverage of the CTV and gross tumour volume (GTV) for the Lucite cone applicator (LCA: planar), current sheet applicator (CSA: planar) and the HYPERcollar (phased-array). Results: The HYPERcollar provides better SAR coverage than planar applicators if the target region is fully enclosed by its applicator frame. For targets extending outside the HYPERcollar frame, sufficient SAR coverage (25% target coverage, i.e. TC25 ! 75%) can still be achieved using the LCA when the target is fully under the LCA aperture and not deeper than 50 mm from the patient surface. Conclusion: Simulations predict that the HYPERcollar (hence also its successor the HYPERcollar3D) is to be preferred over planar applicators such as LCA and current sheet applicator in sub-superficial tumours in the H&N region when used within specifications. ARTICLE HISTORY
Purpose: Hyperthermia (40-44 C) effectively sensitises tumours to radiotherapy by locally altering tumour biology. One of the effects of heat at the cellular level is inhibition of DNA repair by homologous recombination via degradation of the BRCA2-protein. This suggests that hyperthermia can expand the group of patients that benefit from PARP-inhibitors, a drug exploiting homologous recombination deficiency. Here, we explore whether the molecular mechanisms that cause heat-mediated degradation of BRCA2 are conserved in cell lines from various origins and, most importantly, whether, BRCA2 protein levels can be attenuated by heat in freshly biopted human tumours. Experimental design: Cells from four established cell lines and from freshly biopsied material of cervical (15), head-and neck (9) or bladder tumours (27) were heated to 42 C for 60 min ex vivo. In vivo hyperthermia was studied by taking two biopsies of the same breast or cervical tumour: one before and one after treatment. BRCA2 protein levels were measured by immunoblotting. Results: We found decreased BRCA2-levels after hyperthermia in all established cell lines and in 91% of all tumours treated ex vivo. For tumours treated with hyperthermia in vivo, technical issues and intra-tumour heterogeneity prevented obtaining interpretable results. Conclusions: This study demonstrates that heat-mediated degradation of BRCA2 occurs in tumour material directly derived from patients. Although BRCA2-degradation may not be a practical biomarker for heat deposition in situ, it does suggest that application of hyperthermia could be an effective method to expand the patient group that could benefit from PARP-inhibitors. ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.