Activity recognition, a key component in pervasive healthcare monitoring, relies on classification algorithms that require labeled data of individuals performing the activity of interest to train accurate models. Labeling data can be performed in a lab setting where an individual enacts the activity under controlled conditions. The ubiquity of mobile and wearable sensors allows the collection of large datasets from individuals performing activities in naturalistic conditions. Gathering accurate data labels for activity recognition is typically an expensive and time-consuming process. In this paper we present two novel approaches for semi-automated online data labeling performed by the individual executing the activity of interest. The approaches have been designed to address two of the limitations of self-annotation: (i) The burden on the user performing and annotating the activity, and (ii) the lack of accuracy due to the user labeling the data minutes or hours after the completion of an activity. The first approach is based on the recognition of subtle finger gestures performed in response to a data-labeling query. The second approach focuses on labeling activities that have an auditory manifestation and uses a classifier to have an initial estimation of the activity, and a conversational agent to ask the participant for clarification or for additional data. Both approaches are described, evaluated in controlled experiments to assess their feasibility and their advantages and limitations are discussed. Results show that while both studies have limitations, they achieve 80% to 90% precision.
This study offers an overview of the thematic structure in Communication during the first two decades of the 20th century, 2001-2010 and 2011-2020. The included work mapped author keywords and keywords plus of citable articles published in the Journal Citation Reports-2019 edition. A longitudinal perspective was employed to visualize the thematic evolution. Four predominant thematic areas were evidenced in both periods: (1) Speech and Language, (2) Commercial Communication, (3) Health Communication, and (4) Organizational Communication. There were four topics reflecting the formation of substantial research areas during the second decade, such as (1) Science Communication, (2) Scholarly Publishing, (3) Mental Health and Interpersonal Relationships, and (4) Crime and Violence. In general, from the first to the second decade, the technological dimension ceased to be predominant, and instead, there was a more significant presence of themes that responded to a socio-psychological dimension.
Coronavirus disease 2019 (COVID-19) has accounted for millions of causalities. While it affects not only individuals but also our collective healthcare and economic systems, testing is insufficient and costly hampering efforts to deal with the pandemic. Chest X-rays are routine radiographic imaging tests that are used for the diagnosis of respiratory conditions such as pneumonia and COVID-19. Convolutional neural networks have shown promise to be effective at classifying X-rays for assisting diagnosis of conditions; however, achieving robust performance demanded in most modern medical applications typically requires a large number of samples. While there exist datasets containing thousands of X-ray images of patients with healthy and pneumonia diagnoses, because COVID-19 is such a recent phenomenon, there are relatively few confirmed COVID-19 positive chest X-rays openly available to the research community. In this paper, we demonstrate the effectiveness of cycle-generative adversarial network, commonly used for neural style transfer, as a way to augment COVID-19 negative X-ray images to look like COVID-19 positive images for increasing the number of COVID-19 positive training samples. The statistical results show an increase in the mean macro f1-score over 21% on a one-tailed t score = 2.68 and p value = 0.01 to accept our alternative hypothesis for an $$\alpha = 0.05$$ α = 0.05 . We conclude that this approach, when used in conjunction with standard transfer learning techniques, is effective at improving the performance of COVID-19 classifiers for a variety of common convolutional neural networks.
INTRODUCTION: Dementia is a syndrome characterised by a decline in memory, language, and problem-solving that affects the ability of patients to perform everyday activities. Patients with dementia tend to experience episodes of anxiety and remain for extended periods, which affects their quality of life.OBJECTIVES: To design AnxiDetector, a system capable of detecting patterns of sounds associated before and during the manifestation of anxiety in patients with dementia. METHODS:We conducted a non-participatory observation of 70 diagnosed patients in-situ, and conducted semi-structured interviews with four caregivers at a residential centre. Using the findings from our observation and caregiver interviews, we developed the AnxiDetector prototype and tested this in an experimental setting where we defined nine classes of audio to represent two groups of sounds: (i) Disturbance which includes audio files that characterise sounds that trigger anxiety in patients with dementia, and (ii) Expression which includes audio files that characterise sounds expressed by the patients during episodes of anxiety. We conducted two experimental classifications of sounds using (i) a Neural Network model trained and (ii) a Support Vector Machine model. The first evaluation consists of a binary discriminating between the two groups of sounds; the second evaluation discriminates the nine classes of audio. The audio resources were retrieved from publicly available datasets. RESULTS:The qualitative results present the views of the caregivers on the adoption of AnxiDetector. The quantitative results from our binary discrimination show a classification accuracy of 98.1% and 99.2% for the Deep Neural Network and Support Vector Machine models, respectively. When classifying the nine classes of sound, our model shows a classification accuracy of 92.2%. Whereas, the Support Vector Machine model yielded an overall classification accuracy of 93.0%. CONCLUSION: In this paper, we presented the outcomes from an observational study in-site at a residential care centre, qualitative findings from interviews with caregivers, the design of AnxiDetector, and preliminary qualitative results of a methodology devised to detect relevant acoustic events associated with anxiety in patients with dementia. We conclude by signalling future plans to conduct in-situ validation of the effectiveness of AnxiDetector for anxiety detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.