Fourteen-day, proton pump inhibitor-based triple therapy achieves better results than 7-day schedules. Additional data are necessary to evaluate 10-day therapies.
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Aim: To perform a meta‐analysis of studies comparing twice daily, one‐week triple therapy with a proton pump inhibitor, clarithromycin (C) and amoxycillin (A) (PCA) vs. those using proton pump inhibitor, clarithromycin and a nitroimidazole (N) (PCN) for H. pylori eradication. Review methods: Selection criteria: Comparative randomized trials of PCA vs. PCN were included. Data sources: PubMed database and abstracts from congresses until September 1999. Statistics: Meta‐analysis was performed combining the Odds Ratios (OR) of the individual studies in a global OR (Peto method) both on an intention‐to‐treat (ITT) and on a per protocol (PP) basis. Results: Twenty‐two studies fulfilled the inclusion criteria. Eighteen studies reported ITT and 20 PP analysis. Mean H. pylori eradication rates were 81% (95% CI: 79–83%) ITT, and 84% (82–86%) PP with PCA, and 81% (78–83%) ITT and 84% (82–86%) PP with PCN; the odds ratio for the effect of PCA vs. PCN was 1 (0.83–1.22) on an ITT, and 0.98 (0.8–1.2) on a PP basis. Subanalysis showed that mean H. pylori eradication efficacy with PC(250 b.d.)A was 81% (78–85%) ITT, vs. 86% (83–89%) with PC(250 b.d.)N. The odds ratio for this comparison was 0.68 (0.48–0.98). Finally, when comparing PC(500 b.d.)A against PC(250 b.d.)N ITT cure rates were 77% (74–80%), and 75% (72–78%) with an odds ratio of 1.18 (0.93–1.5). Conclusion: Overall, one‐week combination regimens of PCA and PCN present similar H. pylori eradication efficacy. Nevertheless, the PCN regimen obtains significantly better results when using low doses of C (250 mg b.d.).
We have used intracellular recording to investigate the existence of a functional link between muscarinic presynaptic acetylcholine (ACh) autoreceptors, the intracellular serine-threonine kinases-mediated transduction pathways and transmitter release in the motor nerve terminals of adult rats. We found the following. (1) Transmitter release was reduced by the M1 muscarinic acetylcholine receptor (mAChR) blocker pirenzepine and enhanced by the M2 blocker methoctramine. The unselective mAChR blocker atropine increased ACh release, which suggests the unmasking of another parallel release-potentiating mechanism. There are therefore two opposite, though finely balanced, M1-M2 mAChR-operated mechanisms that tonically modulate transmitter release. (2) Both M1 and M2 mechanisms were altered when protein kinase C (PKC), protein kinase A (PKA) or the P/Q-type calcium channel were blocked. (3) Both PKC and PKA potentiated release when they were specifically stimulated [with phorbol 12-myristate 13-acetate (PMA) and Sp-8-Br cAMPs, respectively], and both needed the P/Q channel. (4) In normal conditions PKC seemed not to be directly involved in transmitter release (the PKC blocker calphostin C did not reduce release), whereas PKA was coupled to potentiate release (the PKA blocker H-89 reduced release). However, when an imbalance of the M1-M2 mAChRs function was experimentally produced with selective blockers, an inversion of the kinase function occurred and PKC could then stimulate transmitter release, whereas PKA was uncoupled. (5) The muscarinic function may be explained by the existence of an M1-mediated increased PKC activity-dependent potentiation of release and an M2-mediated PKA decreased activity-dependent release reduction. These findings show that there is a precise interrelation pattern of the mAChRs, PKC and PKA in the control of the neurotransmitter release.
We studied the presynaptic muscarinic autoreceptor subtypes controlling ACh release and their relationship with voltage-dependent calcium channels in the neuromuscular synapses of the Levator auris longus muscle from adult (30-40 days) and newborn (3-6 and 15 days postnatal) rats. Using intracellular recording, we studied how several muscarinic antagonists affected the evoked endplate potentials. In some experiments we previously incubated the muscle with calcium channel blockers (nitrendipine, omega-conotoxin-GVIA and omega-Agatoxin-IVA) before determining the muscarinic response. In the adult, the M1 receptor-selective antagonist pirenzepine (10 micro m) reduced evoked neurotransmission ( approximately 47%). The M2 receptor-selective antagonist methoctramine (1 micro m) increased the evoked release ( approximately 67%). Both M1- and M2-mediated mechanisms depend on calcium influx via P/Q-type synaptic channels. We found nothing to indicate the presence of M3 (4-DAMP-sensitive) or M4 (tropicamide-sensitive) receptors in the muscles of adult or newborn rats. In the 3-6-day newborn rats, pirenzepine reduced the evoked release ( approximately 30%) by a mechanism independent of L-, N- and P/Q-type calcium channels, and the M2 antagonist methoctramine (1 micro m) unexpectedly decreased the evoked release ( approximately 40%). This methoctramine effect was a P/Q-type calcium-channel-dependent mechanism. However, upon maturation in the first two postnatal weeks, the M2 pathway shifted to perform the calcium-dependent release-inhibitory activity found in the adult. We show that the way in which M1 and M2 muscarinic receptors modulate neurotransmission can differ between the developing and adult rat neuromuscular synapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.