He then pursued an MSc under the supervision of Dr Michael Connor. Matthew subsequently worked towards his PhD as a member of the Muscle Health Research Centre at York University under the supervision of Dr David Hood. His work focused on skeletal muscle autophagy, mitophagy and lysosome biogenesis with disuse, ageing and exercise. Matthew is currently a postdoctoral fellow at the University of Ottawa, investigating mechanisms by which mitochondria regulate muscle stem cell homeostasis and function.
The adaptive plasticity of mitochondria within skeletal muscle is regulated by signals converging on a myriad of regulatory networks that operate during conditions of increased (i.e. exercise) and decreased (inactivity, disuse) energy requirements. Notably, some of the initial signals that induce adaptive responses are common to both conditions, differing in their magnitude and temporal pattern, to produce vastly opposing mitochondrial phenotypes. In response to exercise, signaling to PGC-1α and other regulators ultimately produces an abundance of high quality mitochondria, leading to reduced mitophagy and a higher mitochondrial content. This is accompanied by the presence of an enhanced protein quality control system that consists of the protein import machinery as well chaperones and proteases termed the UPRmt. The UPRmt monitors intra-organelle proteostasis, and strives to maintain a mito-nuclear balance between nuclear- and mtDNA-derived gene products via retrograde signaling from the organelle to the nucleus. In addition, antioxidant capacity is improved, affording greater protection against oxidative stress. In contrast, chronic disuse conditions produce similar signaling but result in decrements in mitochondrial quality and content. Thus, the interactive cross-talk of the regulatory networks that control organelle turnover during wide variations in muscle use and disuse remain incompletely understood, despite our improving knowledge of the traditional regulators of organelle content and function. This brief review acknowledges existing regulatory networks and summarizes recent discoveries of novel biological pathways involved in determining organelle biogenesis, dynamics, mitophagy, protein quality control and antioxidant capacity, identifying ample protein targets for therapeutic intervention that determine muscle and mitochondrial health.
Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.
While it is well established that endurance exercise improves mitochondrial health in skeletal muscle, optimizing nutraceutical agents to mimic these metabolic achievements in the cell remains a challenge. Nonetheless, the application of exercise mimetics is a fruitful direction to pursue, as they may target and activate the same mechanisms that are upregulated with exercise administration alone. This is particularly useful under conditions where contractile activity is compromised due to muscle disuse, disease, or aging. The agents Sulforaphane (SFN) and Urolithin A (UroA) represent our preliminary candidates for antioxidation and mitophagy, respectively, for maintaining mitochondrial turnover and homeostasis. SFN is a powerful inducer of the Nrf‐2‐ARE pathway, a mechanism that upregulates cellular defences against oxidative stress. On the other hand, the metabolite, UroA, has developed a reputable role in regulating mitochondrial turnover via mitophagy. The purpose of this ongoing study is to characterize these nutraceutical agents both in their time‐ and dose‐dependent capacities to induce changes in protein content relative to the antioxidant and mitophagy pathways, in C2C12 myotubes. Differentiated muscle cells were treated with two concentrations of each nutraceutical for 4 h, 24 h, or 48 h. Immunoblot analysis was conducted to measure changes in protein content. SFN treatment after 4 h rendered a marked increase in the master regulator for antioxidation, and transcription factor, Nrf‐2, with no apparent changes in its negative regulator Keap‐1 at any given time point. Nuclear‐cytoplasmic fractions confirmed Nrf‐2 translocation to the nucleus following 4 h of treatment, likely representing the potent activation of antioxidant genes. This aligns with the upregulation of the downstream antioxidant markers HO‐1 and NQO1, showing 4‐5‐fold increases as early as 4 h and 24 h, respectively, and maintained after 48 h. Despite modest effects with Urolithin A, some significant changes took place under basal conditions. The upstream kinase phospho‐AMPK was activated by 2‐fold as early as 4 hr of treatment with UroA, which subsided by 24 and 48 h. Previous reports observed changes with the agent on autophagy markers, which includes the modest 1.3‐fold increases in p62 and LC3‐II after 48 h of treatment. However, no observable changes took place with respect to the mitophagy markers phospho‐ULK1, Parkin, or PINK1. Nonetheless, our preliminary results suggest that these agents may be suitable candidates as exercise mimetics. These data also set the stage for an examination of the synergistic effect of these nutraceuticals, in combination with contractile activity, on mitochondrial turnover and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.