Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes.However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25 • in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs).Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability.The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.
We analyze the stability properties of the Synchrosqueezing transform, a time-frequency signal analysis method that can identify and extract oscillatory components with time-varying frequency and amplitude. We show that Synchrosqueezing is robust to bounded perturbations of the signal and to Gaussian white noise. These results justify its applicability to noisy or nonuniformly sampled data that is ubiquitous in engineering and the natural sciences. We also describe a practical implementation of Synchrosqueezing and provide guidance on tuning its main parameters.As a case study in the geosciences, we examine characteristics of a key paleoclimate change in the last 2.5 million years, where Synchrosqueezing provides significantly improved insights.
Rainfall in the tropics is largely focused in a narrow zonal band near the Equator, known as the intertropical convergence zone. On average, substantially more rain falls just north of the Equator 1 . This hemispheric asymmetry in tropical rainfall has been attributed to hemispheric asymmetries in ocean temperature induced by tropical landmasses. However, the ocean meridional overturning circulation also redistributes energy, by carrying heat northwards across the Equator. Here, we use satellite observations of the Earth's energy budget 2 , atmospheric reanalyses 3 and global climate model simulations to study tropical rainfall using a global energetic framework. We show that the meridional overturning circulation contributes significantly to the hemispheric asymmetry in tropical rainfall by transporting heat from the Southern Hemisphere to the Northern Hemisphere, and thereby pushing the tropical rain band north. This northward shift in tropical precipitation is seen in global climate model simulations when ocean heat transport is included, regardless of whether continents are present or not. If the strength of the meridional overturning circulation is reduced in the future as a result of global warming, as has been suggested 4 , precipitation patterns in the tropics could change, with potential societal consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.