Skeletal muscle is a highly plastic tissue with a remarkable capacity to adapt itself to challenges imposed by contractile activity. Adaptive response, that include hypertrophy and activation of oxidative mechanisms have been associated with transient changes in transcriptional activity of specific genes. To define the set of genes regulated by a depolarizing stimulus, we used 22 K mouse oligonucleotide microarrays. Total RNA from C2C12 myotubes was obtained at 2, 4, 18, and 24 h after high K+ stimulation. cDNA from control and depolarized samples was labeled with cyanine 3 or 5 dyes prior to microarray hybridization. Loess normalization followed by statistical analysis resulted in 423 differentially expressed genes using an unadjusted P-value < or = 0.01 as cut off. Depolarization affects transcriptional activity of a limited number of genes, mainly associated with metabolism, cell communication and response to stress. A number of genes related to Ca2+ signaling pathways are induced at 4 h, reinforcing the potential role of Ca2+ in early steps of signal transduction that leads to gene expression. Significant changes in the expression of molecules involved in muscle cell structure were observed; K+-depolarization increased Tnni1 and Acta1 mRNA levels in both differentiated C2C12 and rat skeletal muscle cells in primary culture. Of these two, depolarization induced slow Ca2+ transients appear to have a role only in the regulation of Tnni1 transcriptional activity. We suggest that depolarization induced expression of a small set of genes may underlie Ca2+ dependent plasticity of skeletal muscle cells.
Bone metastases from prostate origin generate an osteoblastic reaction that is expressed in vitro by increased osteoblast proliferation. The urokinase-like plasminogen activator (u-PA) present in the media conditioned by tumoral prostatic cells acting as a ligand of the cellular membrane receptor (u-PAR), has been identified as the specific factor that modulates this proliferative reaction. The present study represents an effort to unravel the intracellular pathway by which u-PA activates osteoblastic proliferation and to evaluate the role of cellular receptor u-PAR in this proliferative phenomenon. Our results show that in vitro u-PA stimulates proliferation of SaOS-2 osteoblastic cells by activating the MAP kinase route of ERK 1 and 2 and the p38 pathway. These results are in accordance with the inhibition of intermediate activation and cell proliferation by PD 098059 and SB 203580, specific inhibitors of MEK and p38, respectively. We also show that SaOS-2 cells increase their proliferative response when cells are plated onto vitronectin, the second natural ligand of u-PAR, and that culturing SaOS-2 cells in the presence of u-PA represents a stimuli for u-PAR expression. On the basis of these results we propose that osteoblastic cells respond to the prostate-derived u-PA stimuli in a very efficient manner that includes the utilization of two different signaling routes and the stimulation of the expression of the u-PA receptor.
Insulin resistance is defined as a reduced ability of insulin to stimulate glucose utilization. C57BL/6 mice fed with a high-fat diet (HFD) are a model of insulin resistance. In skeletal muscle, hydrogen peroxide (H2O2) produced by NADPH oxidase 2 (NOX2) is involved in signaling pathways triggered by insulin. We evaluated oxidative status in skeletal muscle fibers from insulin-resistant and control mice by determining H2O2 generation (HyPer probe), reduced-to-oxidized glutathione ratio and NOX2 expression. After eight weeks of HFD, insulin-dependent glucose uptake was impaired in skeletal muscle fibers when compared with control muscle fibers. Insulin-resistant mice showed increased insulin-stimulated H2O2 release and decreased reduced-to-oxidized glutathione ratio (GSH/GSSG). In addition, p47phox and gp91phox (NOX2 subunits) mRNA levels were also high (~3-fold in HFD mice compared to controls), while protein levels were 6.8- and 1.6-fold higher, respectively. Using apocynin (NOX2 inhibitor) during the HFD feeding period, the oxidative intracellular environment was diminished and skeletal muscle insulin-dependent glucose uptake restored. Our results indicate that insulin-resistant mice have increased H2O2 release upon insulin stimulation when compared with control animals, which appears to be mediated by an increase in NOX2 expression.
Contracting skeletal muscle produces and releases interleukin-6 (IL-6) in high amounts. Nevertheless, the mechanisms underlying IL-6 expression are not understood. Because inositol-1,4,5-trisphosphate (IP(3))-mediated slow Ca(2+) signals evoked by depolarization of skeletal myotubes appears to play a role in the regulation of gene expression, we examined its involvement on IL-6 transcription. With the use of semiquantitative RT-PCR, we have shown that K(+) depolarization of myotubes induces a transient increase in IL-6 mRNA level, which peaks at 3-4 h and is independent of extracellular Ca(2+). Inhibitors of IP(3)-dependent Ca(2+) signals, like 2-aminoethoxydiphenyl borate (2-APB) and U-73122, decreased activation of IL-6 gene expression as did Ca(2+) signals inhibitor BAPTA-AM, whereas ryanodine, a fast Ca(2+) transient inhibitor, had no effect on IL-6 induction. Depolarization of myotubes transiently transfected with a reporter gene construct, containing 651 bp of IL-6 promoter, induced a twofold increase in promoter activity, which was abolished by either 2-APB or U-73122 and remained unaffected after ryanodine treatment. Site-directed mutagenesis of parental construct allowed us to identify activator protein-1 and NF-kappaB sequences as regulatory elements involved in IL-6 upregulation. Our results provide evidence for involvement of IP(3)-mediated Ca(2+) signals on IL-6 transcription in skeletal muscle cells.
Inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) drive calcium signals involved in skeletal muscle excitation-transcription coupling and plasticity; IP(3)R subtype distribution and downstream events evoked by their activation have not been studied in human muscle nor has their possible alteration in Duchenne muscular dystrophy (DMD). We studied the expression and localization of IP(3)R subtypes in normal and DMD human muscle and in normal (RCMH) and dystrophic (RCDMD) human muscle cell lines. In normal muscle, both type 1 IP(3)Rs (IP(3)R1) and type 2 IP(3)Rs (IP(3)R2) show a higher expression in type II fibers, whereas type 3 IP(3)Rs (IP(3)R3) show uniform distribution. In DMD biopsies, all fibers display a homogeneous IP(3)R2 label, whereas 24 +/- 7% of type II fibers have lost the IP(3)R1 label. RCDMD cells show 5-fold overexpression of IP(3)R2 and down-regulation of IP(3)R3 compared with RCMH cells. A tetanic stimulus induces IP(3)-dependent slow Ca(2+) transients significantly larger and faster in RCDMD cells than in RCMH cells as well as significant ERK1/2 phosphorylation in normal but not in dystrophic cells. Excitation-driven gene expression was different among cell lines; 44 common genes were repressed in RCMH cells and expressed in RCDMD cells or vice versa. IP(3)-dependent Ca(2+) release may play a significant role in DMD pathophysiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.