As automated controllers supplant human intervention in controlling complex systems, the operators' role often changes from that of an active controller to that of a supervisory controller. Acting as supervisors, operators can choose between automatic and manual control. Improperly allocating function between automatic and manual control can have negative consequences for the performance of a system. Previous research suggests that the decision to perform the job manually or automatically depends, in part, upon the trust the operators invest in the automatic controllers. This paper reports an experiment to characterize the changes in operators' trust during an interaction with a semi-automatic pasteurization plant, and investigates the relationship between changes in operators' control strategies and trust. A regression model identifies the causes of changes in trust, and a 'trust transfer function' is developed using time series analysis to describe the dynamics of trust. Based on a detailed analysis of operators' strategies in response to system faults we suggest a model for the choice between manual and automatic control, based on trust in automatic controllers and self-confidence in the ability to control the system manually.
In shadowing one of two simultaneous messages presented dichotically, subjects are unable to report any of the content of the rejected message. Even if the rejected message consists of a short list of simple words repeated many times, a recognition test fails to reveal any trace of the list. If numbers are interpolated in prose passages presented for dichotic shadowing, no more are recalled from the rejected messages if the instructions are specifically to remember numbers than if the instructions are general: a specific set for numbers will not break through the attentional barrier set up in this task. The only stimulus so far found that will break through this barrier is the subject's own name. It is probably only material “important” to the subject that will break through the barrier.
Two experiments are reported which examined operators' trust in and use of the automation in a simulated supervisory process control task. Tests of the integrated model of human trust in machines proposed by Muir (1994) showed that models of interpersonal trust capture some important aspects of the nature and dynamics of human-machine trust. Results showed that operators' subjective ratings of trust in the automation were based mainly upon their perception of its competence. Trust was significantly reduced by any sign of incompetence in the automation, even one which had no effect on overall system performance. Operators' trust changed very little with experience, with a few notable exceptions. Distrust in one function of an automatic component spread to reduce trust in another function of the same component, but did not generalize to another independent automatic component in the same system, or to other systems. There was high positive correlation between operators' trust in and use of the automation; operators used automation they trusted and rejected automation they distrusted, preferring to do the control task manually. There was an inverse relationship between trust and monitoring of the automation. These results suggest that operators' subjective ratings of trust and the properties of the automation which determine their trust, can be used to predict and optimize the dynamic allocation of functions in automated systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.