Background: The seed powder of the leguminous plant, Mucuna pruriens has long been used in traditional Ayurvedic Indian medicine for diseases including parkinsonism. We have assessed the clinical effects and levodopa (L-dopa) pharmacokinetics following two different doses of mucuna preparation and compared them with standard L-dopa/carbidopa (LD/CD). Methods: Eight Parkinson's disease patients with a short duration L-dopa response and on period dyskinesias completed a randomised, controlled, double blind crossover trial. Patients were challenged with single doses of 200/50 mg LD/CD, and 15 and 30 g of mucuna preparation in randomised order at weekly intervals. L-Dopa pharmacokinetics were determined, and Unified Parkinson's Disease Rating Scale and tapping speed were obtained at baseline and repeatedly during the 4 h following drug ingestion. Dyskinesias were assessed using modified AIMS and Goetz scales. Results: Compared with standard LD/CD, the 30 g mucuna preparation led to a considerably faster onset of effect (34.6 v 68.5 min; p = 0.021), reflected in shorter latencies to peak L-dopa plasma concentrations. Mean on time was 21.9% (37 min) longer with 30 g mucuna than with LD/CD (p = 0.021); peak L-dopa plasma concentrations were 110% higher and the area under the plasma concentration v time curve (area under curve) was 165.3% larger (p = 0.012). No significant differences in dyskinesias or tolerability occurred. Conclusions: The rapid onset of action and longer on time without concomitant increase in dyskinesias on mucuna seed powder formulation suggest that this natural source of L-dopa might possess advantages over conventional L-dopa preparations in the long term management of PD. Assessment of long term efficacy and tolerability in a randomised, controlled study is warranted.
These data provide a comprehensive comparison of serum protein binding of all available AEDs including the metabolites, carbamazepine-epoxide and N-desmethyl-clobazam. Knowledge of the free fraction of these AEDs can be used to optimize epilepsy treatment.
Summary:Purpose: Approximately 30% of patients with epilepsy do not experience satisfactory seizure control with antiepileptic drug (AED) monotherapy and often require polytherapy. The potential usefulness of AED combinations, in terms of efficacy and adverse effects, is therefore of major importance. The present study sought to identify potentially useful AED combinations with levetiracetam (LEV)Methods: With isobolographic analysis, the mouse maximal electroshock (MES)-induced seizure model was investigated with regard to the anticonvulsant effects of carbamazepine (CBZ), phenytoin, phenobarbital (PB), valproate, lamotrigine, topiramate (TPM), and oxcarbazepine (OXC), administered singly and in combination with LEV. Acute adverse effects were ascertained by use of the chimney test evaluating motor performance and the step-through passive-avoidance task assessing long-term memory. Brain AED concentrations were determined to ascertain any pharmacokinetic contribution to the observed antiseizure effect.Results: LEV in combination with TPM, at the fixed ratios of 1:2, 1:1, 2:1, and 4:1, was supraadditive (synergistic) in the MES test. Likewise, the combination of LEV with CBZ (at the fixed ratio of 16:1) and LEV with OXC (8:1 and 16:1) were supraadditive. In contrast, all other LEV/AED combinations displayed additivity. Furthermore, none of the investigated LEV/AED combinations altered motor performance and long-term memory. LEV brain concentrations were unaffected by concomitant AED administration, and LEV had no significant effect on brain concentrations of concomitant AEDs.Conclusions: These preclinical data would suggest that LEV in combination with TPM is associated with beneficial anticonvulsant pharmacodynamic interactions. Similar, but less profound effects were seen with OXC and CBZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.