Earlier reports have summarized crop yield losses throughout various North American regions if weeds were left uncontrolled. Offered here is a report from the current WSSA Weed Loss Committee on potential yield losses due to weeds based on data collected from various regions of the United States and Canada. Dry bean yield loss estimates were made by comparing dry bean yield in the weedy control with plots that had >95% weed control from research studies conducted in dry bean growing regions of the United States and Canada over a 10-year period (2007 to 2016). Results from these field studies showed that dry bean growers in Idaho, Michigan, Montana, Nebraska, North Dakota, South Dakota, Wyoming, Ontario, and Manitoba would potentially lose an average of 50%, 31%, 36%, 59%, 94%, 31%, 71%, 56%, and 71% of their dry bean yield, respectively. This equates to a monetary loss of US $36, 40, 6, 56, 421, 2, 18, 44, and 44 million, respectively, if the best agronomic practices are used without any weed management tactics. Based on 2016 census data, at an average yield loss of 71.4% for North America due to uncontrolled weeds, dry bean production in the United States and Canada would be reduced by 941,000,000 and 184,000,000 kg, valued at approximately US $622 and US $100 million, respectively. This study documents the dramatic yield and monetary losses in dry beans due to weed interference and the importance of continued funding for weed management research to minimize dry bean yield losses.
Widespread and repeated use of glyphosate resulted in an increase in glyphosate-resistant (GR) weeds. This led to an urgent need for diversification of weed control programs and use of PRE herbicides with alternative sites of action. Field experiments were conducted over a 4-yr period (2015 to 2018) across three locations in Nebraska to evaluate the effects of PRE-applied herbicides on critical time for weed removal (CTWR) in GR soybean. The studies were laid out in a split-plot arrangement with herbicide regime as the main plot and weed removal timing as the subplot. The herbicide regimes used were either no PRE or premix of either sulfentrazone plus imazethapyr (350 + 70 g ai ha−1) or saflufenacil plus imazethapyr plus pyroxasulfone (26 + 70 + 120 g ai ha−1). The weed removal timings were at V1, V3, V6, R2, and R5 soybean stages, with weed-free and weedy season-long checks. Weeds were removed by application of glyphosate (1,400 g ae ha−1) or by hoeing. The results across all years and locations suggested that the use of PRE herbicides delayed CTWR in soybean. In particular, the CTWR without PRE herbicides was determined to be around the V1 to V2 (14 to 21 d after emergence [DAE]) growth stage, depending on the location and weed pressure. The use of PRE-applied herbicides delayed CTWR from about the V4 (28 DAE) stage up to the R5 (66 DAE) stage. These results suggest that the use of PRE herbicides in GR soybean could delay the need for POST application of glyphosate by 2 to 5 wk, thereby reducing the need for multiple applications of glyphosate during the growing season. Additionally, the use of PRE herbicides could provide additional modes of action needed to manage GR weeds in GR soybean.
The objective of this WSSA Weed Loss Committee report is to provide quantitative data on the potential yield loss in sugar beet due to weed interference from the major sugar beet growing areas of the United States and Canada. Researchers and extension specialists who conducted research on weed control in sugar beet in the United States and Canada provided quantitative data on sugar beet yield loss due to weed interference in their regions. Specifically, data were requested from weed control studies in sugar beet from up to 10 individual studies per calendar year over a 15-yr period between 2002 and 2017. Data collected indicated that if weeds are left uncontrolled under optimal agronomic practices, growers in Idaho, Michigan, Minnesota, Montana, Nebraska, North Dakota, Ontario, Oregon, and Wyoming would potentially lose an average of 79%, 61%, 66%, 68%, 63%, 75%, 83%, 78%, and 77% of the sugar beet yield. The corresponding monetary loss would be approximately US$234, US$122, US$369, US$43, US$40, US$211, US$12, US$14, and US$32 million, respectively. The average yield loss due to weed interference for the primary sugar beet growing areas of North America was estimated to be 70%. Thus, if weeds are not controlled, growers in the United States would lose approximately 22.4 million tonnes of sugar beet yield valued at approximately US$1.25 billion, and growers in Canada would lose approximately 0.5 million tonnes of sugar beet yield valued at approximately US$25 million. The high return on investment in weed management highlights the importance of continued weed science research for sustaining high crop yield and profitability of sugar beet production in North America.
Corn-on-corn production systems, common in highly productive irrigated fields in South Central Nebraska, can create issues with volunteer corn management in corn fields. EnlistTM corn is a new multiple herbicide–resistance trait providing resistance to 2,4-D, glyphosate, and the aryloxyphenoxypropionate herbicides (FOPs), commonly integrated in glufosinate-resistant germplasm. The objectives of this study were to (1) evaluate ACCase-inhibiting herbicides for glyphosate/glufosinate-resistant volunteer corn control in Enlist corn and (2) evaluate the effect of ACCase-inhibiting herbicide application timing (early POST vs. late POST) on volunteer corn control, Enlist corn injury, and yield. Field experiments were conducted in 2018 and 2019 at South Central Agricultural Laboratory near Clay Center, NE. Glyphosate/glufosinate-resistant corn harvested the year prior was cross-planted at 49,000 seeds ha–1 to mimic volunteer corn in this study. After 7 to 10 d had passed, Enlist corn was planted at 91,000 seeds ha–1. Application timing of FOPs (fluazifop, quizalofop, and fluazifop/fenoxaprop) had no effect on Enlist corn injury or yield, and provided 97% to 99% control of glyphosate/glufosinate-resistant volunteer corn at 28 d after treatment (DAT). Cyclohexanediones (clethodim and sethoxydim; DIMs) and phenylpyrazolin (pinoxaden; DEN) provided 84% to 98% and 65% to 71% control of volunteer corn at 28 DAT, respectively; however, the treatment resulted in 62% to 96% Enlist corn injury and 69% to 98% yield reduction. Orthogonal contrasts comparing early-POST (30-cm-tall volunteer corn) and late-POST (50-cm-tall volunteer corn) applications of FOPs were not significant for volunteer corn control, Enlist corn injury, and yield. Fluazifop, quizalofop, and fluazifop/fenoxaprop resulted in 94% to 99% control of glyphosate/glufosinate-resistant volunteer corn with no associated Enlist corn injury or yield loss; however, quizalofop is the only labeled product as of 2020 for control of volunteer corn in Enlist corn.
Restoring soil carbon (C) lost due to intensive farming is a long-term endeavor under current conservation management practices. Application of coal combustion residue (293 g C kg −1) from a sugar beet (Beta vulgaris L.) processing factory, hereafter referred to as char, could rapidly restore soil C and productivity in degraded croplands, but data on this potential strategy are unavailable. We assessed the impacts of char application to two relatively low-C soils (10.1 and 12.2 g C kg −1) and one relatively high-C soil (17.3 g C kg −1) on soil C, soil physical and fertility properties, and crop yields in no-till systems in the Great Plains after 2 yr. Char was disked to 15 cm soil depth at char-C application rates ranging from 0 to 19.7 Mg C ha −1 , corresponding to char application rates ranging from 0 to 67.3 Mg ha −1. The highest char rate increased C concentration in all soils but increased C stock only in low-C soils. Char did not affect soil penetration resistance, available water, aggregate stability, most nutrients, and crop yields. Char application at high rates increased sulfate, Ca, Mg, and Na concentrations but did not influence other properties. Carbon recovery of the char applied at the highest rate varied among soils from 50 to 85%, but the mechanisms for such differences need further investigation. Short-term duration, low char C concentration, and low application rates may explain the limited char effects. Overall, char application at 19.7 Mg char-C ha −1 (i.e., 67.3 Mg char ha −1) increased soil C concentration but had negligible effects on other soil properties and crop yields after 2 yr. 1 INTRODUCTION Intensively tilled soils coupled with crop-fallow systems in semiarid regions such as those in the U.S. Great Plains Abbreviations: CEC, cation exchange capacity; HighC, high-carbon soil at the Sidney site; LowC1, low-carbon soil at the Scottsbluff site; LowC2, low-carbon soil at the Sidney site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.