Background - To assess the genetic architecture of hypertrophic cardiomyopathy (HCM) in patients of predominantly Chinese ancestry. Methods - We sequenced HCM disease genes in Singaporean patients (n=224) and Singaporean controls (n=3,634), compared findings with additional populations and Caucasian HCM cohorts (n=6,179) and performed in vitro functional studies. Results - Singaporean HCM patients had significantly fewer confidently interpreted HCM disease variants (Pathogenic (P)/Likely Pathogenic (LP):18%, p<0.0001) but an excess of variants of unknown significance (exVUS: 24%, p<0.0001), as compared to Caucasians (P/LP: 31%, exVUS: 7%). Two missense variants in thin filament encoding genes were commonly seen in Singaporean HCM ( TNNI3 :p.R79C, disease allele frequency (AF)=0.018; TNNT2 :p.R286H, disease AF=0.022) and are enriched in Singaporean HCM when compared with Asian controls ( TNNI3 :p.R79C, Singaporean controls AF=0.0055, p=0.0057, gnomAD-East Asian (gnomAD-EA) AF=0.0062, p=0.0086; TNNT2 :p.R286H, Singaporean controls AF=0.0017, p<0.0001, gnomAD-EA AF=0.0009, p<0.0001). Both these variants have conflicting annotations in ClinVar and are of low penetrance ( TNNI3 :p.R79C, 0.7%; TNNT2 :p.R286H, 2.7%) but are predicted to be deleterious by computational tools. In population controls, TNNI3 :p.R79C carriers had significantly thicker left ventricular walls compared to non-carriers while its etiological fraction is limited (0.70, 95% CI: 0.35-0.86) and thus TNNI3 :p.R79C is considered a VUS. Mutant TNNT2 :p.R286H iPSC-CMs show hypercontractility, increased metabolic requirements and cellular hypertrophy and the etiological fraction (0.93, 95% CI: 0.83-0.97) support the likely pathogenicity of TNNT2 :p.R286H. Conclusions - As compared to Caucasians, Chinese HCM patients commonly have low penetrance risk alleles in TNNT2 or TNNI3 but exhibit few clinically actionable HCM variants overall. This highlights the need for greater study of HCM genetics in non-Caucasian populations.
Interleukin (IL) 11 is a member of the IL6 family of cytokines which require the ubiquitous gp130 receptor to activate canonical (JAK/STAT) and non-canonical (e.g., ERK) signaling pathways. The IL11 cytokine is upregulated in a number of fibro-inflammatory diseases and cancer, where it binds the cognate IL11 receptor alpha subunit (IL11RA) to form a hexameric IL11:IL11RA:gp130 signaling complex. The specific IL11RA receptor is highly expressed on cells of the stromal and parenchymal niche but expressed at low levels on immune cells, highly passaged cells, or transformed cell lines. Consequently, primary cells such as hepatic stellate cells, fibroblasts, and hepatocytes are ideal experimental systems to study IL11 signaling in vitro. In contrast to immortalized cell lines, primary cells better display relevant cellular physiology and pathobiology. This collection of protocols details experimental and culturing conditions for primary cells that preserve meaningful cellular states and physiological responses ex vivo in conventional 2D cell culture systems. Readouts of cellular activity are chosen carefully to capture the non-canonical, post-transcriptional activity of IL11 signaling. Our data suggest that cell type, cell culture conditions, passage number, concentrations of stimuli, timing, and other factors have major implications for studies of IL11 signaling. In vitro experiments with primary cell material need to be planned and executed with great caution. Otherwise, physiologically relevant mechanisms may become dysfunctional and reproducible experimental artefacts can obscure our view of true cytokine biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.