Traveling waves of cortical activity are hypothesized to organize cortical information processing and support interregional communication. Yet, it remains unknown whether interacting areas exhibit the matched traveling waves necessary to support this hypothesized form of interaction.Here, we show that the strongly-interacting medial entorhinal cortex (MEC) and hippocampus exhibit matched traveling waves. We demonstrate that both the field potential and spiking in the MEC exhibit prominent 6-12 Hz 'theta' traveling waves matching those of the hippocampus. The theta phase shifts observed along the MEC were accounted for largely by variation in waveform asymmetry. From this, we hypothesize that that gradients in local physiology underlie both the generation of MEC traveling waves and the functional variations observed previously across the MEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.