An accurate estimation of generated electronic waste (e-waste) plays a pivotal role in the development of any appropriate e-waste management plan. The present study aimed to exploit modified adaptive neuro-fuzzy inference system (MANFIS) for the estimation of generated e-waste. There are different parameters affecting e-waste generation, the most important of which need to be identified to achieve the accurate estimation. The MANFIS used for parameter selection involves evaluating multiple choices between twelve initially specified parameters. The MANFIS models with five inputs have the highest mean R2(train) and R2(test) (0.978 and 0.952, respectively, in training and testing stages). According to the results, the best combination of parameters was related to legal imports of electrical and electronic equipment (EEE), smuggling (illegal) imports of EEE, exports of EEE, accumulation of EEE in Tehran, and accumulation of EEE in Iran with RMSE(train) and RMSE(test) of 0.221 and 2.221, respectively. The findings showed that the model with three triangular membership functions had the best performance; R2(train) and RMSE(train) values were 0.981 and 1.371, as well as R2(test) and RMSE(test) values were 0.971 and 1.678, respectively. Finally, the developed model was successfully applied for prediction of monthly e-waste generation in Tehran for thirteen selected electronic items. The obtained consistent results emphasized that appropriate selection of the number of input parameters and their combination, along with identifying optimal structure of MANFIS, provides a proper, simple and accurate prediction of e-waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.